Suppr超能文献

基于交互式搜索与分类的临床词义消歧

Clinical Word Sense Disambiguation with Interactive Search and Classification.

作者信息

Wang Yue, Zheng Kai, Xu Hua, Mei Qiaozhu

机构信息

Department of EECS, University of Michigan, Ann Arbor, MI, USA.

Department of Informatics, University of California, Irvine, CA, USA.

出版信息

AMIA Annu Symp Proc. 2017 Feb 10;2016:2062-2071. eCollection 2016.

Abstract

Resolving word ambiguity in clinical text is critical for many natural language processing applications. Effective word sense disambiguation (WSD) systems rely on training a machine learning based classifier with abundant clinical text that is accurately annotated, the creation of which can be costly and time-consuming. We describe a double-loop interactive machine learning process, named ReQ-ReC (ReQuery-ReClassify), and demonstrate its effectiveness on multiple evaluation corpora. Using ReQ-ReC, a human expert first uses her domain knowledge to include sense-specific contextual words into the ReQuery loops and searches for instances relevant to the senses. Then, in the ReClassify loops, the expert only annotates the most ambiguous instances found by the current WSD model. Even with machine-generated queries only, the framework is comparable with or faster than current active learning methods in building WSD models. The process can be further accelerated when human experts use their domain knowledge to guide the search process.

摘要

解决临床文本中的词歧义问题对于许多自然语言处理应用至关重要。有效的词义消歧(WSD)系统依赖于使用大量经过准确标注的临床文本训练基于机器学习的分类器,而创建这些标注文本可能成本高昂且耗时。我们描述了一种双循环交互式机器学习过程,名为ReQ-ReC(重新查询-重新分类),并在多个评估语料库上证明了其有效性。使用ReQ-ReC时,人类专家首先利用其领域知识将特定词义的上下文词纳入重新查询循环,并搜索与这些词义相关的实例。然后,在重新分类循环中,专家仅对当前WSD模型发现的最具歧义的实例进行标注。即使仅使用机器生成的查询,该框架在构建WSD模型方面也与当前的主动学习方法相当或更快。当人类专家利用其领域知识指导搜索过程时,该过程可以进一步加速。

相似文献

1
Clinical Word Sense Disambiguation with Interactive Search and Classification.
AMIA Annu Symp Proc. 2017 Feb 10;2016:2062-2071. eCollection 2016.
2
Interactive medical word sense disambiguation through informed learning.
J Am Med Inform Assoc. 2018 Jul 1;25(7):800-808. doi: 10.1093/jamia/ocy013.
3
4
Harmony Search Algorithm for Word Sense Disambiguation.
PLoS One. 2015 Sep 30;10(9):e0136614. doi: 10.1371/journal.pone.0136614. eCollection 2015.
5
deepBioWSD: effective deep neural word sense disambiguation of biomedical text data.
J Am Med Inform Assoc. 2019 May 1;26(5):438-446. doi: 10.1093/jamia/ocy189.
6
Knowledge-based biomedical word sense disambiguation: comparison of approaches.
BMC Bioinformatics. 2010 Nov 22;11:569. doi: 10.1186/1471-2105-11-569.
7
Collocation analysis for UMLS knowledge-based word sense disambiguation.
BMC Bioinformatics. 2011 Jun 9;12 Suppl 3(Suppl 3):S4. doi: 10.1186/1471-2105-12-S3-S4.
8
Determining the difficulty of Word Sense Disambiguation.
J Biomed Inform. 2014 Feb;47:83-90. doi: 10.1016/j.jbi.2013.09.009. Epub 2013 Sep 26.
9
Knowledge-based biomedical word sense disambiguation: an evaluation and application to clinical document classification.
J Am Med Inform Assoc. 2013 Sep-Oct;20(5):882-6. doi: 10.1136/amiajnl-2012-001350. Epub 2012 Oct 16.
10
Applying active learning to supervised word sense disambiguation in MEDLINE.
J Am Med Inform Assoc. 2013 Sep-Oct;20(5):1001-6. doi: 10.1136/amiajnl-2012-001244. Epub 2013 Jan 30.

引用本文的文献

1
Processing of Short-Form Content in Clinical Narratives: Systematic Scoping Review.
J Med Internet Res. 2024 Sep 26;26:e57852. doi: 10.2196/57852.
2
Clinical Text Data in Machine Learning: Systematic Review.
JMIR Med Inform. 2020 Mar 31;8(3):e17984. doi: 10.2196/17984.
3
deepBioWSD: effective deep neural word sense disambiguation of biomedical text data.
J Am Med Inform Assoc. 2019 May 1;26(5):438-446. doi: 10.1093/jamia/ocy189.
4
A novel framework for biomedical entity sense induction.
J Biomed Inform. 2018 Aug;84:31-41. doi: 10.1016/j.jbi.2018.06.007. Epub 2018 Jun 20.
5
A bibliometric analysis of natural language processing in medical research.
BMC Med Inform Decis Mak. 2018 Mar 22;18(Suppl 1):14. doi: 10.1186/s12911-018-0594-x.
6
Interactive medical word sense disambiguation through informed learning.
J Am Med Inform Assoc. 2018 Jul 1;25(7):800-808. doi: 10.1093/jamia/ocy013.
7
Knowledge-Based Biomedical Word Sense Disambiguation with Neural Concept Embeddings.
Proc IEEE Int Symp Bioinformatics Bioeng. 2017 Oct;2017:163-170. doi: 10.1109/BIBE.2017.00-61. Epub 2018 Jan 11.

本文引用的文献

2
A sense inventory for clinical abbreviations and acronyms created using clinical notes and medical dictionary resources.
J Am Med Inform Assoc. 2014 Mar-Apr;21(2):299-307. doi: 10.1136/amiajnl-2012-001506. Epub 2013 Jun 27.
3
Applying active learning to supervised word sense disambiguation in MEDLINE.
J Am Med Inform Assoc. 2013 Sep-Oct;20(5):1001-6. doi: 10.1136/amiajnl-2012-001244. Epub 2013 Jan 30.
4
2010 i2b2/VA challenge on concepts, assertions, and relations in clinical text.
J Am Med Inform Assoc. 2011 Sep-Oct;18(5):552-6. doi: 10.1136/amiajnl-2011-000203. Epub 2011 Jun 16.
5
Exploiting MeSH indexing in MEDLINE to generate a data set for word sense disambiguation.
BMC Bioinformatics. 2011 Jun 2;12:223. doi: 10.1186/1471-2105-12-223.
6
Word sense disambiguation across two domains: biomedical literature and clinical notes.
J Biomed Inform. 2008 Dec;41(6):1088-100. doi: 10.1016/j.jbi.2008.02.003. Epub 2008 Mar 4.
7
Using MEDLINE as a knowledge source for disambiguating abbreviations and acronyms in full-text biomedical journal articles.
J Biomed Inform. 2007 Apr;40(2):150-9. doi: 10.1016/j.jbi.2006.06.001. Epub 2006 Jun 7.
8
10
Word sense disambiguation in the biomedical domain: an overview.
J Comput Biol. 2005 Jun;12(5):554-65. doi: 10.1089/cmb.2005.12.554.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验