Radboud University , Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
Eindhoven University of Technology , Bio-organic Chemistry Lab, P.O. Box 513 (STO 3.31), 5600 MB Eindhoven, The Netherlands.
Biomacromolecules. 2017 Apr 10;18(4):1302-1310. doi: 10.1021/acs.biomac.7b00064. Epub 2017 Mar 16.
Recombinant llama heavy-chain antibody fragments (VHHs) are promising tools in the field of targeted nanomedicine. 7D12, a VHH against the epidermal growth factor receptor (EGFR) that is overexpressed in various cancers, has been evaluated as an effective cancer-targeting VHH in multiple studies. The small size of VHHs (15-20 kDa) results in a low circulation half-life, which can be disadvantageous for certain applications. A solution to this problem is to attach VHHs to the surface of nanoparticles to increase the hydrodynamic radius of the conjugate. This approach simultaneously allows the incorporation of different VHHs and other targeting moieties and therapeutic components into one structure, creating multispecificity and versatility for therapy and diagnosis. Here, we present the construction of highly defined 7D12-containing nanoparticles by utilizing thermoresponsive diblock elastin-like peptides that reversibly self-assemble into micellar structures. The resulting particles have a hydrodynamic radius of 24.3 ± 0.9 nm and retain full EGFR-binding capacity. We present proof of concept of the usability of such particles by controlled incorporation of a photosensitizer and show that the resulting nanoparticles induce EGFR-specific light-induced cell killing. This approach is easily extended to the controlled incorporation of various functional modules, improving therapy and diagnosis with targeted nanomedicine.
重链抗体片段(VHHs)是靶向纳米医学领域有前途的工具。7D12 是一种针对表皮生长因子受体(EGFR)的 VHH,该受体在多种癌症中过度表达,已在多项研究中被评估为有效的癌症靶向 VHH。VHH 的体积小(15-20 kDa)导致循环半衰期短,这在某些应用中可能不利。解决此问题的一种方法是将 VHH 附着在纳米粒子的表面上,以增加缀合物的流体力学半径。这种方法同时允许将不同的 VHH 及其它靶向部分和治疗成分并入一个结构中,为治疗和诊断创造了多功能性和多功能性。在这里,我们通过利用热响应性二嵌段弹性蛋白样肽来构建高度定义的含有 7D12 的纳米粒子,这些肽可可逆地自组装成胶束结构。所得颗粒的流体力学半径为 24.3 ± 0.9nm,并保留完整的 EGFR 结合能力。我们通过受控掺入光敏剂证明了此类颗粒的可用性的概念证明,并表明所得纳米颗粒诱导 EGFR 特异性光诱导细胞杀伤。这种方法很容易扩展到各种功能模块的受控掺入,从而提高了靶向纳米医学的治疗和诊断效果。