Suppr超能文献

Shh和Fgf信号通路在调控培养的肢体细胞基因表达中的整合作用。

Integration of Shh and Fgf signaling in controlling gene expression in cultured limb cells.

作者信息

Rodrigues Alan R, Yakushiji-Kaminatsui Nayuta, Atsuta Yuji, Andrey Guillaume, Schorderet Patrick, Duboule Denis, Tabin Clifford J

机构信息

Department of Genetics, Harvard Medical School, Boston, MA 02115.

Laboratory of Developmental Genomics, Federal Institute of Technology, Lausanne, CH-1015 Lausanne, Switzerland.

出版信息

Proc Natl Acad Sci U S A. 2017 Mar 21;114(12):3139-3144. doi: 10.1073/pnas.1620767114. Epub 2017 Mar 7.

Abstract

During embryonic development, fields of progenitor cells form complex structures through dynamic interactions with external signaling molecules. How complex signaling inputs are integrated to yield appropriate gene expression responses is poorly understood. In the early limb bud, for instance, Sonic hedgehog () is expressed in the distal posterior mesenchyme, where it acts as a mediator of anterior to posterior (AP) patterning, whereas fibroblast growth factor 8 () is produced by the apical ectodermal ridge (AER) at the distal tip of the limb bud to direct outgrowth along the proximal to distal (PD) axis. Here we use cultured limb mesenchyme cells to assess the response of the target genes to these two factors. We find that they act synergistically and that both factors are required to activate in limb mesenchymal cells. However, the analysis of the enhancer landscapes flanking the cluster reveals that the bimodal regulatory switch observed in vivo is only partially achieved under these in vitro conditions, suggesting an additional requirement for other factors.

摘要

在胚胎发育过程中,祖细胞群通过与外部信号分子的动态相互作用形成复杂结构。目前对于复杂的信号输入如何整合以产生适当的基因表达反应还知之甚少。例如,在早期肢芽中,音猬因子(Sonic hedgehog,Shh)在远端后间充质中表达,在那里它作为前后(AP)模式形成的介质,而成纤维细胞生长因子8(Fibroblast growth factor 8,Fgf8)由肢芽远端顶端的顶端外胚层嵴(AER)产生,以指导沿近端到远端(PD)轴的生长。在这里,我们使用培养的肢间充质细胞来评估靶基因对这两种因子的反应。我们发现它们协同作用,并且两种因子都是激活肢间充质细胞中Shh所必需的。然而,对Shh基因簇侧翼增强子景观的分析表明,在体内观察到的双峰调节开关在这些体外条件下仅部分实现,这表明还需要其他因子。

相似文献

5
Analysis of Hox gene expression in the chick limb bud.鸡胚肢芽中Hox基因表达的分析。
Development. 1996 May;122(5):1449-66. doi: 10.1242/dev.122.5.1449.
8
Limb patterning: from signaling gradients to molecular oscillations.肢体模式形成:从信号梯度到分子震荡。
J Mol Biol. 2014 Feb 20;426(4):780-4. doi: 10.1016/j.jmb.2013.11.022. Epub 2013 Dec 4.

引用本文的文献

6
Chromosome Conformation Capture for Large Genomes.大基因组的染色体构象捕获。
Methods Mol Biol. 2023;2562:291-318. doi: 10.1007/978-1-0716-2659-7_20.
8
New developments in the biology of fibroblast growth factors.成纤维细胞生长因子生物学的新进展。
WIREs Mech Dis. 2022 Jul;14(4):e1549. doi: 10.1002/wsbm.1549. Epub 2022 Feb 9.

本文引用的文献

3
Spatiotemporal regulation of GLI target genes in the mammalian limb bud.哺乳动物肢体芽中GLI靶基因的时空调控。
Dev Biol. 2015 Oct 1;406(1):92-103. doi: 10.1016/j.ydbio.2015.07.022. Epub 2015 Jul 31.
6
deepTools: a flexible platform for exploring deep-sequencing data.deepTools:一个灵活的高通量测序数据处理平台。
Nucleic Acids Res. 2014 Jul;42(Web Server issue):W187-91. doi: 10.1093/nar/gku365. Epub 2014 May 5.
7
SnapShot: Hox gene regulation.简讯:Hox基因调控
Cell. 2014 Feb 13;156(4):856-856.e1. doi: 10.1016/j.cell.2014.01.060.
10
The hierarchy of the 3D genome.三维基因组的层次结构。
Mol Cell. 2013 Mar 7;49(5):773-82. doi: 10.1016/j.molcel.2013.02.011.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验