Departments of Pathology and Medicine, UC San Diego, La Jolla, CA 92093-0612, USA.
Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44116, USA.
Sci Rep. 2017 Mar 8;7:43295. doi: 10.1038/srep43295.
Misfolded prion protein aggregates (PrP) show remarkable structural diversity and are associated with highly variable disease phenotypes. Similarly, other proteins, including amyloid-β, tau, α-synuclein, and serum amyloid A, misfold into distinct conformers linked to different clinical diseases through poorly understood mechanisms. Here we use mice expressing glycophosphatidylinositol (GPI)-anchorless prion protein, PrP, together with hydrogen-deuterium exchange coupled with mass spectrometry (HXMS) and a battery of biochemical and biophysical tools to investigate how post-translational modifications impact the aggregated prion protein properties and disease phenotype. Four GPI-anchorless prion strains caused a nearly identical clinical and pathological disease phenotype, yet maintained their structural diversity in the anchorless state. HXMS studies revealed that GPI-anchorless PrP is characterized by substantially higher protection against hydrogen/deuterium exchange in the C-terminal region near the N-glycan sites, suggesting this region had become more ordered in the anchorless state. For one strain, passage of GPI-anchorless prions into wild type mice led to the emergence of a novel strain with a unique biochemical and phenotypic signature. For the new strain, histidine hydrogen-deuterium mass spectrometry revealed altered packing arrangements of β-sheets that encompass residues 139 and 186 of PrP. These findings show how variation in post-translational modifications may explain the emergence of new protein conformations in vivo and also provide a basis for understanding how the misfolded protein structure impacts the disease.
错误折叠的朊病毒蛋白聚集体 (PrP) 表现出显著的结构多样性,并与高度可变的疾病表型相关。同样,其他蛋白质,包括淀粉样β、tau、α-突触核蛋白和血清淀粉样蛋白 A,通过尚未完全理解的机制错误折叠成与不同临床疾病相关的不同构象。在这里,我们使用表达糖基磷脂酰肌醇 (GPI) 无锚定朊病毒蛋白的小鼠,与氢氘交换结合质谱 (HXMS) 以及一系列生化和生物物理工具一起,研究翻译后修饰如何影响聚集的朊病毒蛋白特性和疾病表型。四种 GPI 无锚定朊病毒株导致几乎相同的临床和病理疾病表型,但在无锚定状态下仍保持其结构多样性。HXMS 研究表明,GPI 无锚定 PrP 的 C 末端区域(靠近 N-糖基化位点)对氢/氘交换具有显著更高的保护作用,这表明该区域在无锚定状态下变得更加有序。对于一种株系,将 GPI 无锚定朊病毒传入野生型小鼠会导致出现一种具有独特生化和表型特征的新型株系。对于新株系,组氨酸氢氘质谱揭示了包含 PrP 残基 139 和 186 的 β-折叠的改变的堆积排列。这些发现表明翻译后修饰的变化如何解释体内新蛋白质构象的出现,并为理解错误折叠的蛋白质结构如何影响疾病提供了基础。