Suppr超能文献

用于纵向竞争风险数据分析的具有偏态分布和协变量测量误差的半参数混合效应联合模型的同时推断

Simultaneous inference for semiparametric mixed-effects joint models with skew distribution and covariate measurement error for longitudinal competing risks data analysis.

作者信息

Lu Tao

机构信息

a Department of Mathematics and Statistics , University of Nevada , Reno , Nevada , USA.

出版信息

J Biopharm Stat. 2017;27(6):1009-1027. doi: 10.1080/10543406.2017.1293080. Epub 2017 Mar 28.

Abstract

Semiparametric mixed-effects joint models are flexible for modeling complex longitudinal-competing risks data. Skew distributions are commonly observed for this type of data. Covariates in the joint models are usually measured with substantial errors. We propose a Bayesian method for semiparametric mixed-effects joint models with covariate measurement errors and skew distribution. The methods are illustrated with AIDS clinical data. Simulation results are conducted to validate the proposed methods.

摘要

半参数混合效应联合模型在对复杂的纵向竞争风险数据进行建模时具有灵活性。对于这类数据,通常会观察到偏态分布。联合模型中的协变量通常是在存在大量误差的情况下进行测量的。我们提出了一种用于具有协变量测量误差和偏态分布的半参数混合效应联合模型的贝叶斯方法。通过艾滋病临床数据对这些方法进行了说明。进行了模拟结果以验证所提出的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验