Choi Soonwon, Choi Joonhee, Landig Renate, Kucsko Georg, Zhou Hengyun, Isoya Junichi, Jelezko Fedor, Onoda Shinobu, Sumiya Hitoshi, Khemani Vedika, von Keyserlingk Curt, Yao Norman Y, Demler Eugene, Lukin Mikhail D
Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.
School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.
Nature. 2017 Mar 8;543(7644):221-225. doi: 10.1038/nature21426.
Understanding quantum dynamics away from equilibrium is an outstanding challenge in the modern physical sciences. Out-of-equilibrium systems can display a rich variety of phenomena, including self-organized synchronization and dynamical phase transitions. More recently, advances in the controlled manipulation of isolated many-body systems have enabled detailed studies of non-equilibrium phases in strongly interacting quantum matter; for example, the interplay between periodic driving, disorder and strong interactions has been predicted to result in exotic 'time-crystalline' phases, in which a system exhibits temporal correlations at integer multiples of the fundamental driving period, breaking the discrete time-translational symmetry of the underlying drive. Here we report the experimental observation of such discrete time-crystalline order in a driven, disordered ensemble of about one million dipolar spin impurities in diamond at room temperature. We observe long-lived temporal correlations, experimentally identify the phase boundary and find that the temporal order is protected by strong interactions. This order is remarkably stable to perturbations, even in the presence of slow thermalization. Our work opens the door to exploring dynamical phases of matter and controlling interacting, disordered many-body systems.
理解远离平衡态的量子动力学是现代物理科学中的一项重大挑战。非平衡态系统能够展现出丰富多样的现象,包括自组织同步和动力学相变。最近,对孤立多体系统进行可控操纵的进展使得人们能够对强相互作用量子物质中的非平衡相展开详细研究;例如,周期性驱动、无序和强相互作用之间的相互作用预计会导致奇特的“时间晶体”相,在这种相中,系统在基本驱动周期的整数倍处表现出时间相关性,从而打破了底层驱动的离散时间平移对称性。在此,我们报告了在室温下对金刚石中约一百万个偶极自旋杂质的受驱无序系综中这种离散时间晶体序的实验观测。我们观测到了长寿命的时间相关性,通过实验确定了相边界,并发现时间序受到强相互作用的保护。即使在存在缓慢热化的情况下,这种序对微扰也具有显著的稳定性。我们的工作为探索物质的动力学相以及控制相互作用的无序多体系统打开了大门。