Suppr超能文献

采用质子检测和超快魔角旋转的固态 NMR 对去氘蛋白进行骨架 assignments。

Backbone assignment of perdeuterated proteins by solid-state NMR using proton detection and ultrafast magic-angle spinning.

机构信息

Department of Molecular Biophysics, Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany.

Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.

出版信息

Nat Protoc. 2017 Apr;12(4):764-782. doi: 10.1038/nprot.2016.190. Epub 2017 Mar 9.

Abstract

Solid-state NMR (ssNMR) is a technique that allows the study of protein structure and dynamics at atomic detail. In contrast to X-ray crystallography and cryo-electron microscopy, proteins can be studied under physiological conditions-for example, in a lipid bilayer and at room temperature (0-35 °C). However, ssNMR requires considerable amounts (milligram quantities) of isotopically labeled samples. In recent years, H-detection of perdeuterated protein samples has been proposed as a method of alleviating the sensitivity issue. Such methods are, however, substantially more demanding to the spectroscopist, as compared with traditional C-detected approaches. As a guide, this protocol describes a procedure for the chemical shift assignment of the backbone atoms of proteins in the solid state by H-detected ssNMR. It requires a perdeuterated, uniformly C- and N-labeled protein sample with subsequent proton back-exchange to the labile sites. The sample needs to be spun at a minimum of 40 kHz in the NMR spectrometer. With a minimal set of five 3D NMR spectra, the protein backbone and some of the side-chain atoms can be completely assigned. These spectra correlate resonances within one amino acid residue and between neighboring residues; taken together, these correlations allow for complete chemical shift assignment via a 'backbone walk'. This results in a backbone chemical shift table, which is the basis for further analysis of the protein structure and/or dynamics by ssNMR. Depending on the spectral quality and complexity of the protein, data acquisition and analysis are possible within 2 months.

摘要

固态核磁共振(ssNMR)是一种可以在原子水平上研究蛋白质结构和动力学的技术。与 X 射线晶体学和低温电子显微镜相比,ssNMR 可以在生理条件下研究蛋白质,例如在脂质双层和室温(0-35°C)下。然而,ssNMR 需要相当数量(毫克数量级)的同位素标记样品。近年来,提出了对氘代蛋白质样品进行 H 检测作为缓解灵敏度问题的一种方法。然而,与传统的 C 检测方法相比,这些方法对光谱学家的要求要高得多。本协议指南描述了一种通过 H 检测 ssNMR 对蛋白质在固态下的骨架原子进行化学位移分配的程序。它需要一个氘代、均匀 C 和 N 标记的蛋白质样品,随后进行质子到不稳定位点的反向交换。样品需要在 NMR 光谱仪中以至少 40 kHz 的速度旋转。通过最少五个 3D NMR 谱图,可以完全分配蛋白质骨架和一些侧链原子。这些谱图在一个氨基酸残基内和相邻残基之间相关联共振;这些关联一起通过“骨架行走”允许完全化学位移分配。这导致了骨架化学位移表,这是通过 ssNMR 进一步分析蛋白质结构和/或动力学的基础。根据蛋白质的光谱质量和复杂性,数据采集和分析可以在 2 个月内完成。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验