Andreas Loren B, Jaudzems Kristaps, Stanek Jan, Lalli Daniela, Bertarello Andrea, Le Marchand Tanguy, Cala-De Paepe Diane, Kotelovica Svetlana, Akopjana Inara, Knott Benno, Wegner Sebastian, Engelke Frank, Lesage Anne, Emsley Lyndon, Tars Kaspars, Herrmann Torsten, Pintacuda Guido
Centre de Résonance Magnétique Nucléaire à Très Hauts Champs, Institut des Sciences Analytiques (UMR 5280 - CNRS, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1), Université de Lyon, 69100 Villeurbanne, France;
Biomedical Research and Study Centre, LV-1067 Riga, Latvia;
Proc Natl Acad Sci U S A. 2016 Aug 16;113(33):9187-92. doi: 10.1073/pnas.1602248113. Epub 2016 Aug 3.
Protein structure determination by proton-detected magic-angle spinning (MAS) NMR has focused on highly deuterated samples, in which only a small number of protons are introduced and observation of signals from side chains is extremely limited. Here, we show in two fully protonated proteins that, at 100-kHz MAS and above, spectral resolution is high enough to detect resolved correlations from amide and side-chain protons of all residue types, and to reliably measure a dense network of (1)H-(1)H proximities that define a protein structure. The high data quality allowed the correct identification of internuclear distance restraints encoded in 3D spectra with automated data analysis, resulting in accurate, unbiased, and fast structure determination. Additionally, we find that narrower proton resonance lines, longer coherence lifetimes, and improved magnetization transfer offset the reduced sample size at 100-kHz spinning and above. Less than 2 weeks of experiment time and a single 0.5-mg sample was sufficient for the acquisition of all data necessary for backbone and side-chain resonance assignment and unsupervised structure determination. We expect the technique to pave the way for atomic-resolution structure analysis applicable to a wide range of proteins.
通过质子检测的魔角旋转(MAS)核磁共振来确定蛋白质结构,主要集中在高度氘代的样品上,在这类样品中仅引入少量质子,并且对侧链信号的观测极为有限。在此,我们在两种完全质子化的蛋白质中表明,在100 kHz及以上的MAS条件下,光谱分辨率足够高,能够检测到所有残基类型的酰胺质子和侧链质子的分辨相关性,并可靠地测量定义蛋白质结构的密集的(1)H - (1)H邻近网络。高数据质量使得通过自动数据分析能够正确识别三维光谱中编码的核间距离限制,从而实现准确、无偏差且快速的结构确定。此外,我们发现更窄的质子共振线、更长的相干寿命以及改进的磁化转移弥补了100 kHz及以上旋转频率下样品量的减少。不到两周的实验时间以及仅一个0.5毫克的样品就足以获取用于主链和侧链共振归属以及无监督结构确定所需的所有数据。我们期望该技术为适用于广泛蛋白质的原子分辨率结构分析铺平道路。