Suppr超能文献

皮质骨在髋部骨折中的作用。

Role of cortical bone in hip fracture.

作者信息

Reeve Jonathan

机构信息

NIHR Musculo-skeletal Biomedical Research Unit, Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences , Oxford, UK.

出版信息

Bonekey Rep. 2017 Jan 13;6:867. doi: 10.1038/bonekey.2016.82. eCollection 2017.

Abstract

In this review, I consider the varied mechanisms in cortical bone that help preserve its integrity and how they deteriorate with aging. Aging affects cortical bone in two ways: extrinsically through its effects on the individual that modify its mechanical loading experience and 'milieu interieur'; and intrinsically through the prolonged cycle of remodelling and renewal extending to an estimated 20 years in the proximal femur. Healthy femoral cortex incorporates multiple mechanisms that help prevent fracture. These have been described at multiple length scales from the individual bone mineral crystal to the scale of the femur itself and appear to operate hierarchically. Each cortical bone fracture begins as a sub-microscopic crack that enlarges under mechanical load, for example, that imposed by a fall. In these conditions, a crack will enlarge explosively unless the cortical bone is intrinsically tough (the opposite of brittle). Toughness leads to microscopic crack deflection and bridging and may be increased by adequate regulation of both mineral crystal size and the heterogeneity of mineral and matrix phases. The role of osteocytes in optimising toughness is beginning to be worked out; but many osteocytes die without triggering bone renewal over a 20-year cycle, with potential for increasing brittleness. Furthermore, the superolateral cortex of the proximal femur thins progressively during life, so increasing the risk of buckling during a fall. Besides preserving or increasing hip BMD, pharmaceutical treatments have class-specific effects on the toughness of cortical bone, although dietary and exercise-based interventions show early promise.

摘要

在这篇综述中,我探讨了皮质骨中有助于维持其完整性的多种机制,以及这些机制如何随衰老而退化。衰老以两种方式影响皮质骨:外在方面,通过其对个体的影响改变其机械负荷体验和“内环境”;内在方面,通过延长的重塑和更新周期,在股骨近端估计长达20年。健康的股骨皮质包含多种有助于预防骨折的机制。这些机制已在从单个骨矿物质晶体到股骨本身的多个长度尺度上得到描述,并且似乎是分层运作的。每一次皮质骨骨折都始于一个亚微观裂缝,该裂缝在机械负荷(例如跌倒时施加的负荷)下会扩大。在这些情况下,除非皮质骨本身坚韧(与脆性相反),裂缝会迅速扩大。韧性会导致微观裂缝偏转和桥接,并且可以通过对矿物质晶体大小以及矿物质和基质相的异质性进行适当调节来提高。骨细胞在优化韧性方面的作用正在逐步明晰;但是许多骨细胞在长达20年的周期内死亡而未触发骨更新,这有可能增加脆性。此外,股骨近端的上外侧皮质在一生中会逐渐变薄,因此增加了跌倒时发生屈曲的风险。除了保持或增加髋部骨密度外,药物治疗对皮质骨韧性具有类别特异性影响,尽管基于饮食和运动的干预措施已显示出早期成效。

相似文献

1
Role of cortical bone in hip fracture.
Bonekey Rep. 2017 Jan 13;6:867. doi: 10.1038/bonekey.2016.82. eCollection 2017.
2
The fragile elderly hip: mechanisms associated with age-related loss of strength and toughness.
Bone. 2014 Apr;61(100):138-48. doi: 10.1016/j.bone.2013.12.034. Epub 2014 Jan 9.
4
Age-related changes in the plasticity and toughness of human cortical bone at multiple length scales.
Proc Natl Acad Sci U S A. 2011 Aug 30;108(35):14416-21. doi: 10.1073/pnas.1107966108. Epub 2011 Aug 22.
5
Relation between age, femoral neck cortical stability, and hip fracture risk.
Lancet. 2005;366(9480):129-35. doi: 10.1016/S0140-6736(05)66870-5.
6
The true toughness of human cortical bone measured with realistically short cracks.
Nat Mater. 2008 Aug;7(8):672-7. doi: 10.1038/nmat2221. Epub 2008 Jun 29.
7
Effects of age and loading rate on equine cortical bone failure.
J Mech Behav Biomed Mater. 2011 Jan;4(1):57-75. doi: 10.1016/j.jmbbm.2010.09.006. Epub 2010 Sep 21.
8
Human proximal femur bone adaptation to variations in hip geometry.
Bone. 2014 Oct;67:193-9. doi: 10.1016/j.bone.2014.07.001. Epub 2014 Jul 9.
10
Strain rate influence on human cortical bone toughness: A comparative study of four paired anatomical sites.
J Mech Behav Biomed Mater. 2017 Jul;71:223-230. doi: 10.1016/j.jmbbm.2017.03.015. Epub 2017 Mar 22.

引用本文的文献

1
Runaway resorption of microcracks contributes to age-related hip-fracture patients.
Sci Rep. 2025 Aug 7;15(1):28894. doi: 10.1038/s41598-025-12494-6.
2
Proximal Hip Fracture: Does Canal Width Matter?
J Clin Med. 2025 Apr 17;14(8):2768. doi: 10.3390/jcm14082768.
3
Dietary acrylamide and incident osteoporotic fractures: an 8-year prospective cohort study.
Aging Clin Exp Res. 2022 Oct;34(10):2441-2448. doi: 10.1007/s40520-022-02214-9. Epub 2022 Aug 13.
4
Bone mineral density and mortality in end-stage renal disease patients.
Clin Kidney J. 2020 Jun 26;13(3):307-321. doi: 10.1093/ckj/sfaa089. eCollection 2020 Jun.
5
Biomechanics of Osteoporotic Fracture Fixation.
Curr Osteoporos Rep. 2019 Dec;17(6):363-374. doi: 10.1007/s11914-019-00535-9.
6
NOTUM inhibition increases endocortical bone formation and bone strength.
Bone Res. 2019 Jan 8;7:2. doi: 10.1038/s41413-018-0038-3. eCollection 2019.

本文引用的文献

2
The Role of Osteocytes in Age-Related Bone Loss.
Curr Osteoporos Rep. 2016 Feb;14(1):16-25. doi: 10.1007/s11914-016-0297-0.
5
Quantitative 3D analysis of bone in hip osteoarthritis using clinical computed tomography.
Eur Radiol. 2016 Jul;26(7):2047-54. doi: 10.1007/s00330-015-4048-x. Epub 2015 Oct 7.
6
The fracture mechanics of human bone: influence of disease and treatment.
Bonekey Rep. 2015 Sep 2;4:743. doi: 10.1038/bonekey.2015.112. eCollection 2015.
7
Alendronate treatment alters bone tissues at multiple structural levels in healthy canine cortical bone.
Bone. 2015 Dec;81:352-363. doi: 10.1016/j.bone.2015.08.002. Epub 2015 Aug 5.
8
The effect of 8 or 5 years of denosumab treatment in postmenopausal women with osteoporosis: results from the FREEDOM Extension study.
Osteoporos Int. 2015 Dec;26(12):2773-83. doi: 10.1007/s00198-015-3234-7. Epub 2015 Jul 23.
10
Bone microdamage, remodeling and bone fragility: how much damage is too much damage?
Bonekey Rep. 2015 Mar 18;4:644. doi: 10.1038/bonekey.2015.11. eCollection 2015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验