Suppr超能文献

Bile salt-induced calcium fluxes in artificial phospholipid vesicles.

作者信息

Oelberg D G, Wang L B, Sackman J W, Adcock E W, Lester R, Dubinsky W P

机构信息

University of Texas Medical School, Department of Pediatrics, Houston 77225.

出版信息

Biochim Biophys Acta. 1988 Jan 22;937(2):289-99. doi: 10.1016/0005-2736(88)90251-9.

Abstract

The ionic permeability of selected biological membranes is increased by bile salts. To examine changes in calcium permeability during the exposure of artificial membranes to bile salts, we investigated calcium uptake by unilamellar and multilamellar phospholipid vesicles. In the presence of 750 microM taurodeoxycholate, uptake of radiolabelled calcium by unilamellar vesicles increased 2.5-fold over control values. Calcium uptake by multilamellar vesicles as measured with a free calcium indicator, arsenazo III, increased 2.2- or 21-fold in the presence of 60 microM lithocholate or 3 beta-hydroxy-5-cholenoate, respectively. Results were directly influenced by experimental variables such as bile salt hydrophobicity, external calcium concentration, and the bile salt/lipid molar ratio. Observed membrane solubilization was minimal despite increased calcium permeability. Comparison of radiolabelled calcium uptake with radiolabelled sodium or radiolabelled rubidium uptake indicated that bile salt-dependent calcium uptake was 60-140-times greater than bile salt-dependent uptake of either monovalent cation. In an effort to delineate forces affecting calcium translocation, vesicles were exposed either to valinomycin, which induced an electrochemical gradient across the membrane, or to nigericin, which induced a proton gradient. Exposure to valinomycin minimally influenced bile salt-induced calcium uptake while exposure to nigericin significantly promoted uptake by 40-70%. The results suggest that bile salts promote calcium uptake by a mechanism which may be similar to those of other carboxylic ionophores.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验