Raychev Deyan, Guskova Olga
Dresden Center for Computational Materials Science (DCMS), Technische Universität Dresden (TUD), Dresden D-01062, Germany.
Phys Chem Chem Phys. 2017 Mar 22;19(12):8330-8339. doi: 10.1039/c7cp00798a.
A theoretical study is applied to gain insight into the microscopic electron and hole transport in benzothiadiazole-cored molecular semiconductors either with furan or thiophene flanks arranged in π-stacks. For the characterization of the energetics of the reduction and oxidation processes and their impact on the molecular geometry, the internal reorganization energy is defined for isolated molecules in the gas phase. The outer-shell reorganization energy is evaluated within the frequency-resolved cavity model and as an electrostatic contribution within the polarizable continuum model. The intermolecular electronic coupling interaction for the Marcus charge hopping is calculated using the energy splitting in dimer method, the generalized Mulliken-Hush approach and the fragment charge difference scheme. In order to probe the relation between the charge hopping rate/charge carrier mobility and the molecular organization within the π-stacks, different stacking modes are investigated: (i) dimers with a perfect registry, i.e. segregated stacking motif, when molecules are placed face-to-face, and (ii) dimers forming slipped cofacial orientations with longitudinal and transverse shifts, i.e. mixed stacking motif. Besides, the effects of molecular planarity and rigidity, influencing internal molecular relaxation upon charging, the effects of non-covalent interactions within stacks and the heteroatom replacement on the charge carrier mobility are studied. The results obtained in the simulations of one-dimensional aligned π-stacks of molecular semiconductors are compared with available experimental data for small conjugated benzothiadiazole-cored molecules with thiophene flanks and benzothiadiazole-quaterthiophene-based copolymers.
进行了一项理论研究,以深入了解苯并噻二唑为核心、呋喃或噻吩侧翼以π-堆积排列的分子半导体中的微观电子和空穴传输。为了表征还原和氧化过程的能量学及其对分子几何结构的影响,定义了气相中孤立分子的内重组能。在频率分辨腔模型中评估外壳重组能,并在可极化连续介质模型中作为静电贡献进行评估。使用二聚体方法中的能量分裂、广义穆利肯-赫什方法和片段电荷差方案计算马库斯电荷跳跃的分子间电子耦合相互作用。为了探究电荷跳跃速率/电荷载流子迁移率与π-堆积内分子排列之间的关系,研究了不同的堆积模式:(i) 具有完美对齐的二聚体,即当分子面对面放置时的隔离堆积模式,以及 (ii) 形成具有纵向和横向位移的滑移共面取向的二聚体,即混合堆积模式。此外,还研究了分子平面性和刚性对充电时分子内弛豫的影响、堆积内非共价相互作用的影响以及杂原子取代对电荷载流子迁移率的影响。将分子半导体一维排列π-堆积模拟中获得的结果与具有噻吩侧翼的小共轭苯并噻二唑核心分子和苯并噻二唑-四噻吩基共聚物的现有实验数据进行了比较。