Suppr超能文献

超耦合电路 QED 系统中的超快量子计算。

Ultrafast quantum computation in ultrastrongly coupled circuit QED systems.

机构信息

College of Communications Engineering, PLA University of Science and Technology, Nanjing 210007, China.

Quantum Physics and Quantum Information Division, Beijing Computational Science Research Center, Beijing 100193, China.

出版信息

Sci Rep. 2017 Mar 10;7:44251. doi: 10.1038/srep44251.

Abstract

The latest technological progress of achieving the ultrastrong-coupling regime in circuit quantum electrodynamics (QED) systems has greatly promoted the developments of quantum physics, where novel quantum optics phenomena and potential computational benefits have been predicted. Here, we propose a scheme to accelerate the nontrivial two-qubit phase gate in a circuit QED system, where superconducting flux qubits are ultrastrongly coupled to a transmission line resonator (TLR), and two more TLRs are coupled to the ultrastrongly-coupled system for assistant. The nontrivial unconventional geometric phase gate between the two flux qubits is achieved based on close-loop displacements of the three-mode intracavity fields. Moreover, as there are three resonators contributing to the phase accumulation, the requirement of the coupling strength to realize the two-qubit gate can be reduced. Further reduction in the coupling strength to achieve a specific controlled-phase gate can be realized by adding more auxiliary resonators to the ultrastrongly-coupled system through superconducting quantum interference devices. We also present a study of our scheme with realistic parameters considering imperfect controls and noisy environment. Our scheme possesses the merits of ultrafastness and noise-tolerance due to the advantages of geometric phases.

摘要

在电路量子电动力学(QED)系统中实现超强耦合态的最新技术进展极大地推动了量子物理学的发展,预测了新的量子光学现象和潜在的计算优势。在这里,我们提出了一种在电路 QED 系统中加速非平凡两量子比特相位门的方案,其中超导通量量子比特与传输线谐振器(TLR)超强耦合,并且另外两个 TLR 耦合到辅助的超强耦合系统。基于三模腔内场的闭环位移,在两个通量量子比特之间实现了非平凡的非常规几何相位门。此外,由于有三个谐振器有助于相位积累,因此实现两量子比特门所需的耦合强度可以降低。通过在超导量子干涉器件(SQUID)的帮助下,向超强耦合系统添加更多辅助谐振器,可以进一步降低实现特定受控相位门的耦合强度。我们还考虑了不完美控制和嘈杂环境的实际参数,对我们的方案进行了研究。由于几何相位的优势,我们的方案具有超快和耐噪的优点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e604/5345051/9212d37eb4c5/srep44251-f1.jpg

相似文献

1
Ultrafast quantum computation in ultrastrongly coupled circuit QED systems.
Sci Rep. 2017 Mar 10;7:44251. doi: 10.1038/srep44251.
3
Protected quantum computation with multiple resonators in ultrastrong coupling circuit QED.
Phys Rev Lett. 2011 Nov 4;107(19):190402. doi: 10.1103/PhysRevLett.107.190402. Epub 2011 Nov 2.
5
Nonlinear optics quantum computing with circuit QED.
Phys Rev Lett. 2013 Feb 8;110(6):060503. doi: 10.1103/PhysRevLett.110.060503. Epub 2013 Feb 5.
7
Experimental Demonstration of a Resonator-Induced Phase Gate in a Multiqubit Circuit-QED System.
Phys Rev Lett. 2016 Dec 16;117(25):250502. doi: 10.1103/PhysRevLett.117.250502. Epub 2016 Dec 13.
8
A proposal for implementing an n-qubit controlled-rotation gate with three-level superconducting qubit systems in cavity QED.
J Phys Condens Matter. 2011 Jun 8;23(22):225702. doi: 10.1088/0953-8984/23/22/225702. Epub 2011 May 19.
9
Frequency conversion in ultrastrong cavity QED.
Sci Rep. 2017 Jul 13;7(1):5313. doi: 10.1038/s41598-017-04225-3.
10
Single-Loop Realization of Arbitrary Nonadiabatic Holonomic Single-Qubit Quantum Gates in a Superconducting Circuit.
Phys Rev Lett. 2018 Sep 14;121(11):110501. doi: 10.1103/PhysRevLett.121.110501.

引用本文的文献

2
Simulating Anisotropic quantum Rabi model via frequency modulation.
Sci Rep. 2019 Mar 14;9(1):4569. doi: 10.1038/s41598-019-40899-7.
3
Dynamic generation of multi-qubit entanglement in the ultrastrong-coupling regime.
Sci Rep. 2019 Feb 27;9(1):2919. doi: 10.1038/s41598-019-39265-4.
4
Multi-qubit Quantum Rabi Model and Multi-partite Entangled States in a Circuit QED System.
Sci Rep. 2019 Feb 4;9(1):1380. doi: 10.1038/s41598-018-35751-3.

本文引用的文献

1
Digitized adiabatic quantum computing with a superconducting circuit.
Nature. 2016 Jun 9;534(7606):222-6. doi: 10.1038/nature17658.
3
Scattering in the ultrastrong regime: nonlinear optics with one photon.
Phys Rev Lett. 2014 Dec 31;113(26):263604. doi: 10.1103/PhysRevLett.113.263604.
4
Experimental realization of universal geometric quantum gates with solid-state spins.
Nature. 2014 Oct 2;514(7520):72-5. doi: 10.1038/nature13729.
5
Dynamical Casimir effect entangles artificial atoms.
Phys Rev Lett. 2014 Aug 29;113(9):093602. doi: 10.1103/PhysRevLett.113.093602. Epub 2014 Aug 27.
6
Spontaneous conversion from virtual to real photons in the ultrastrong-coupling regime.
Phys Rev Lett. 2013 Jun 14;110(24):243601. doi: 10.1103/PhysRevLett.110.243601. Epub 2013 Jun 11.
7
Synchronized switching in a josephson junction crystal.
Phys Rev Lett. 2014 Jun 6;112(22):223603. doi: 10.1103/PhysRevLett.112.223603. Epub 2014 Jun 4.
8
Coherent Josephson qubit suitable for scalable quantum integrated circuits.
Phys Rev Lett. 2013 Aug 23;111(8):080502. doi: 10.1103/PhysRevLett.111.080502. Epub 2013 Aug 22.
9
Experimental realization of non-Abelian non-adiabatic geometric gates.
Nature. 2013 Apr 25;496(7446):482-5. doi: 10.1038/nature12010. Epub 2013 Apr 17.
10
Photon blockade in the ultrastrong coupling regime.
Phys Rev Lett. 2012 Nov 9;109(19):193602. doi: 10.1103/PhysRevLett.109.193602. Epub 2012 Nov 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验