Paik Hanhee, Mezzacapo A, Sandberg Martin, McClure D T, Abdo B, Córcoles A D, Dial O, Bogorin D F, Plourde B L T, Steffen M, Cross A W, Gambetta J M, Chow Jerry M
IBM T. J. Watson Research Center, Yorktown Heights, New York 10598-0218, USA.
Department of Physics, Syracuse University, Syracuse, New York 13244-1130, USA.
Phys Rev Lett. 2016 Dec 16;117(25):250502. doi: 10.1103/PhysRevLett.117.250502. Epub 2016 Dec 13.
The resonator-induced phase (RIP) gate is an all-microwave multiqubit entangling gate that allows a high degree of flexibility in qubit frequencies, making it attractive for quantum operations in large-scale architectures. We experimentally realize the RIP gate with four superconducting qubits in a three-dimensional circuit-QED architecture, demonstrating high-fidelity controlled-z (cz) gates between all possible pairs of qubits from two different 4-qubit devices in pair subspaces. These qubits are arranged within a wide range of frequency detunings, up to as large as 1.8 GHz. We further show a dynamical multiqubit refocusing scheme in order to isolate out 2-qubit interactions, and combine them to generate a 4-qubit Greenberger-Horne-Zeilinger state.
谐振器诱导相位(RIP)门是一种全微波多量子比特纠缠门,它在量子比特频率方面具有高度灵活性,这使其在大规模架构中的量子操作中颇具吸引力。我们在三维电路量子电动力学架构中通过四个超导量子比特实验实现了RIP门,在成对子空间中展示了来自两个不同4量子比特设备的所有可能量子比特对之间的高保真受控Z(CZ)门。这些量子比特被安排在高达1.8 GHz的宽频率失谐范围内。我们进一步展示了一种动态多量子比特重聚焦方案,以分离出双量子比特相互作用,并将它们组合起来生成一个4量子比特的格林伯格-霍恩-泽林格态。