Hare J D, Suttle L, Lebedev S V, Loureiro N F, Ciardi A, Burdiak G C, Chittenden J P, Clayson T, Garcia C, Niasse N, Robinson T, Smith R A, Stuart N, Suzuki-Vidal F, Swadling G F, Ma J, Wu J, Yang Q
Blackett Laboratory, Imperial College, London, SW7 2AZ, United Kingdom.
Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge Massachusetts 02139, USA.
Phys Rev Lett. 2017 Feb 24;118(8):085001. doi: 10.1103/PhysRevLett.118.085001. Epub 2017 Feb 21.
We present a detailed study of magnetic reconnection in a quasi-two-dimensional pulsed-power driven laboratory experiment. Oppositely directed magnetic fields (B=3 T), advected by supersonic, sub-Alfvénic carbon plasma flows (V_{in}=50 km/s), are brought together and mutually annihilate inside a thin current layer (δ=0.6 mm). Temporally and spatially resolved optical diagnostics, including interferometry, Faraday rotation imaging, and Thomson scattering, allow us to determine the structure and dynamics of this layer, the nature of the inflows and outflows, and the detailed energy partition during the reconnection process. We measure high electron and ion temperatures (T_{e}=100 eV, T_{i}=600 eV), far in excess of what can be attributed to classical (Spitzer) resistive and viscous dissipation. We observe the repeated formation and ejection of plasmoids, consistent with the predictions from semicollisional plasmoid theory.
我们展示了在一个准二维脉冲功率驱动的实验室实验中对磁重联的详细研究。由超音速、亚阿尔文碳等离子体流((V_{in}=50 km/s))平流携带的反向磁场((B = 3 T))汇聚在一起,并在一个薄电流层((\delta = 0.6 mm))内相互湮灭。包括干涉测量、法拉第旋转成像和汤姆逊散射在内的时间和空间分辨光学诊断技术,使我们能够确定该层的结构和动力学、流入和流出的性质以及重联过程中的详细能量分配。我们测量到高电子和离子温度((T_{e}=100 eV),(T_{i}=600 eV)),远超过经典(斯皮策)电阻和粘性耗散所能解释的范围。我们观察到等离子体团的反复形成和喷射,这与半碰撞等离子体团理论的预测一致。