Lu Wei, Li Zhe, Chu Jinghui
School of Electronic Information Engineering, Tianjin University, Tianjin 300072, PR China.
Comput Biol Med. 2017 Apr 1;83:157-165. doi: 10.1016/j.compbiomed.2017.03.002. Epub 2017 Mar 6.
Breast cancer is a common cancer among women. With the development of modern medical science and information technology, medical imaging techniques have an increasingly important role in the early detection and diagnosis of breast cancer. In this paper, we propose an automated computer-aided diagnosis (CADx) framework for magnetic resonance imaging (MRI). The scheme consists of an ensemble of several machine learning-based techniques, including ensemble under-sampling (EUS) for imbalanced data processing, the Relief algorithm for feature selection, the subspace method for providing data diversity, and Adaboost for improving the performance of base classifiers. We extracted morphological, various texture, and Gabor features. To clarify the feature subsets' physical meaning, subspaces are built by combining morphological features with each kind of texture or Gabor feature. We tested our proposal using a manually segmented Region of Interest (ROI) data set, which contains 438 images of malignant tumors and 1898 images of normal tissues or benign tumors. Our proposal achieves an area under the ROC curve (AUC) value of 0.9617, which outperforms most other state-of-the-art breast MRI CADx systems. Compared with other methods, our proposal significantly reduces the false-positive classification rate.
乳腺癌是女性常见的癌症。随着现代医学科学和信息技术的发展,医学成像技术在乳腺癌的早期检测和诊断中发挥着越来越重要的作用。在本文中,我们提出了一种用于磁共振成像(MRI)的自动计算机辅助诊断(CADx)框架。该方案由几种基于机器学习的技术组成,包括用于不平衡数据处理的集成欠采样(EUS)、用于特征选择的Relief算法、用于提供数据多样性的子空间方法以及用于提高基分类器性能的Adaboost。我们提取了形态学、各种纹理和Gabor特征。为了阐明特征子集的物理意义,通过将形态学特征与每种纹理或Gabor特征相结合来构建子空间。我们使用手动分割的感兴趣区域(ROI)数据集对我们的方案进行了测试,该数据集包含438张恶性肿瘤图像和1898张正常组织或良性肿瘤图像。我们的方案实现了0.9617的ROC曲线下面积(AUC)值,优于大多数其他先进的乳腺MRI CADx系统。与其他方法相比,我们的方案显著降低了假阳性分类率。