Santschi P H, Xu C, Zhang S, Schwehr K A, Lin P, Yeager C M, Kaplan D I
Texas A&M-Galveston, Galveston, TX, USA.
Texas A&M-Galveston, Galveston, TX, USA.
J Environ Radioact. 2017 May;171:226-233. doi: 10.1016/j.jenvrad.2017.02.023. Epub 2017 Mar 9.
Among the key environmental factors influencing the fate and transport of radionuclides in the environment is natural organic matter (NOM). While this has been known for decades, there still remains great uncertainty in predicting NOM-radionuclide interactions because of lack of understanding of radionuclide interactions with the specific organic moieties within NOM. Furthermore, radionuclide-NOM studies conducted using modelled organic compounds or elevated radionuclide concentrations provide compromised information related to true environmental conditions. Thus, sensitive techniques are required not only for the detection of radionuclides, and their different species, at ambient and/or far-field concentrations, but also for potential trace organic compounds that are chemically binding these radionuclides. GC-MS and AMS techniques developed in our lab are reviewed here that aim to assess how two radionuclides, iodine and plutonium, form strong bonds with NOM by entirely different mechanisms; iodine tends to bind to aromatic functionalities, whereas plutonium binds to N-containing hydroxamate siderophores at ambient concentrations. While low-level measurements are a prerequisite for assessing iodine and plutonium migration at nuclear waste sites and as environmental tracers, it is necessary to determine their in-situ speciation, which ultimately controls their mobility and transport in natural environments. More importantly, advanced molecular-level instrumentation (e.g., nuclear magnetic resonance (NMR) and Fourier-transform ion cyclotron resonance coupled with electrospray ionization (ESI-FTICRMS) were applied to resolve either directly or indirectly the molecular environments in which the radionuclides are associated with the NOM.
影响放射性核素在环境中归宿和迁移的关键环境因素之一是天然有机物(NOM)。尽管这一情况已为人所知数十年,但由于对放射性核素与NOM中特定有机部分的相互作用缺乏了解,在预测NOM - 放射性核素相互作用方面仍存在很大的不确定性。此外,使用模拟有机化合物或提高放射性核素浓度进行的放射性核素 - NOM研究提供的信息与真实环境条件不符。因此,不仅需要灵敏的技术来检测环境和/或远场浓度下的放射性核素及其不同形态,还需要检测与这些放射性核素发生化学结合的潜在痕量有机化合物。本文综述了我们实验室开发的气相色谱 - 质谱联用(GC - MS)和加速器质谱(AMS)技术,这些技术旨在评估碘和钚这两种放射性核素如何通过完全不同的机制与NOM形成强键;在环境浓度下,碘倾向于与芳香官能团结合,而钚则与含氮异羟肟酸铁载体结合。虽然低水平测量是评估核废料场中碘和钚迁移以及作为环境示踪剂的先决条件,但有必要确定它们的原位形态,这最终控制着它们在自然环境中的迁移率和迁移。更重要的是,应用先进的分子水平仪器(如核磁共振(NMR)和与电喷雾电离联用的傅里叶变换离子回旋共振(ESI - FTICRMS))直接或间接解析放射性核素与NOM相关的分子环境。