Hahn Mark E, Karchner Sibel I, Merson Rebeka R
Biology Department, Woods Hole Oceanographic Institution, MS-32, Woods Hole, MA 02543, USA.
Biology Department, Rhode Island College, 600 Mt. Pleasant Avenue, 251 Fogarty Life Sciences, Providence, RI 02908.
Curr Opin Toxicol. 2017 Feb;2:58-71. doi: 10.1016/j.cotox.2017.02.003. Epub 2017 Feb 16.
The aryl hydrocarbon receptor (AHR) was for many years of interest only to pharmacologists and toxicologists. However, this protein has fundamental roles in biology that are being revealed through studies in diverse animal species. The AHR is an ancient protein. AHR homologs exist in most major groups of modern bilaterian animals, including deuterostomes (chordates, hemichordates, echinoderms) and the two major clades of protostome invertebrates [ecdysozoans (e.g. arthropods and nematodes) and lophotrochozoans (e.g. molluscs and annelids)]. AHR homologs also have been identified in cnidarians such as the sea anemone and in the genome of , a placozoan. Bilaterians, cnidarians, and placozoans form the clade , whose last common ancestor lived approximately 600 million years ago (MYA). The presence of AHR homologs in modern representatives of all these groups indicates that the original eumetazoan animal possessed an AHR homolog. Studies in invertebrates and vertebrates reveal parallel functions of AHR in the development and function of sensory neural systems, suggesting that these may be ancestral roles. Vertebrate animals are characterized by the expansion and diversification of AHRs, via gene and genome duplications, from the ancestral protoAHR into at least five classes of AHR-like proteins: AHR, AHR1, AHR2, AHR3, and AHRR. The evolution of multiple AHRs in vertebrates coincided with the acquisition of high-affinity binding of halogenated and polynuclear aromatic hydrocarbons and the emergence of adaptive functions involving regulation of xenobiotic-metabolizing enzymes and roles in adaptive immunity. The existence of multiple AHRs may have facilitated subfunction partitioning and specialization of specific AHR types in some taxa. Additional research in diverse model and non-model species will continue to enrich our understanding of AHR and its pleiotropic roles in biology and toxicology.
多年来,芳基烃受体(AHR)仅受到药理学家和毒理学家的关注。然而,通过对多种动物物种的研究发现,这种蛋白质在生物学中具有重要的基础作用。AHR是一种古老的蛋白质。在现代大多数主要双侧对称动物群体中都存在AHR同源物,包括后口动物(脊索动物、半索动物、棘皮动物)以及原口无脊椎动物的两个主要分支[蜕皮动物(如节肢动物和线虫)和冠轮动物(如软体动物和环节动物)]。在海葵等刺胞动物以及扁盘动物的基因组中也鉴定出了AHR同源物。双侧对称动物、刺胞动物和扁盘动物构成了真后生动物分支,其最后的共同祖先大约生活在6亿年前(百万年前)。所有这些群体的现代代表中都存在AHR同源物,这表明原始的真后生动物拥有AHR同源物。对无脊椎动物和脊椎动物的研究揭示了AHR在感觉神经系统发育和功能中的平行功能,这表明这些可能是其祖先的作用。脊椎动物的特点是通过基因和基因组复制,从祖先的原始AHR扩展并多样化形成至少五类AHR样蛋白:AHR、AHR1、AHR2、AHR3和AHRR。脊椎动物中多种AHR的进化与卤代和多环芳烃高亲和力结合的获得以及涉及异源生物代谢酶调节的适应性功能的出现和在适应性免疫中的作用相吻合。多种AHR的存在可能促进了某些分类群中特定AHR类型的亚功能划分和特化。对多种模式和非模式物种的进一步研究将继续丰富我们对AHR及其在生物学和毒理学中多效性作用的理解。