Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, P. R. China.
Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin 150001, P.R. China.
Sci Rep. 2017 Mar 13;7:43413. doi: 10.1038/srep43413.
A porous hybrid g-CN/RGO (CNRG) material has been fabricated through a facile hydrothermal process with the help of glucose molecules, and serves as an efficient immobilization substrate to support ultrathin Ni(OH) nanosheets under an easy precipitation process. It was found that the g-CN flakes can uniformly coat on both sides of the RGO, forming sandwich-type composites with a hierarchical structure. It is worth noting that the introduction of the g-CN can effectively achieve the high dispersion and avoid the agglomeration of the nickel hydroxide, and significantly enhance the synthetically capacitive performance. Owning to this unique combination and structure, the CNRG/Ni(OH) composite possesses large surface area with suitable pore size distribution, which can effectively accommodate the electrolyte ions migration and accelerate efficient electron transport. When used as electrode for supercapacitor, the hybrid material exhibits high supercapacitive performance, such as an admirable specific capacitance (1785 F/g at a current density of 2 A/g), desirable rate stability (retain 910 F/g at 20 A/g) and favorable cycling durability (maintaining 71.3% capacity after 5000 cycles at 3 A/g). Such desirable properties signify that the CNRG/Ni(OH) composites can be a promising electrode material in the application of the supercapacitor.
一种多孔混合 g-CN/RGO(CNRG)材料是通过在葡萄糖分子的帮助下通过简便的水热过程制备的,并且是在容易沉淀过程下支持超薄 Ni(OH)纳米片的有效固定化基质。研究发现,g-CN 薄片可以均匀地涂覆在 RGO 的两侧,形成具有分级结构的三明治型复合材料。值得注意的是,g-CN 的引入可以有效地实现高分散并避免氢氧化镍的团聚,从而显著提高合成电容性能。由于这种独特的组合和结构,CNRG/Ni(OH)复合材料具有较大的表面积和适宜的孔径分布,可有效容纳电解质离子的迁移并加速有效的电子传输。当用作超级电容器的电极时,该混合材料表现出高的超级电容性能,例如令人钦佩的比电容(在 2 A/g 的电流密度下为 1785 F/g)、良好的倍率稳定性(在 20 A/g 时保持 910 F/g)和良好的循环耐久性(在 3 A/g 下 5000 次循环后保持 71.3%的容量)。这些理想的特性表明 CNRG/Ni(OH)复合材料在超级电容器的应用中是一种很有前途的电极材料。