Scase Matthew M, Baldwin Kyle A, Hill Richard J A
School of Mathematical Sciences, University of Nottingham;
Faculty of Engineering, University of Nottingham.
J Vis Exp. 2017 Mar 3(121):55088. doi: 10.3791/55088.
Classical techniques for investigating the Rayleigh-Taylor instability include using compressed gasses, rocketry or linear electric motors to reverse the effective direction of gravity, and accelerate the lighter fluid toward the denser fluid. Other authors have separated a gravitationally unstable stratification with a barrier that is removed to initiate the flow. However, the parabolic initial interface in the case of a rotating stratification imposes significant technical difficulties experimentally. We wish to be able to spin-up the stratification into solid-body rotation and only then initiate the flow in order to investigate the effects of rotation upon the Rayleigh-Taylor instability. The approach we have adopted here is to use the magnetic field of a superconducting magnet to manipulate the effective weight of the two liquids to initiate the flow. We create a gravitationally stable two-layer stratification using standard flotation techniques. The upper layer is less dense than the lower layer and so the system is Rayleigh-Taylor stable. This stratification is then spun-up until both layers are in solid-body rotation and a parabolic interface is observed. These experiments use fluids with low magnetic susceptibility, |χ| ~ 10 - 10, compared to a ferrofluids. The dominant effect of the magnetic field applies a body-force to each layer changing the effective weight. The upper layer is weakly paramagnetic while the lower layer is weakly diamagnetic. When the magnetic field is applied, the lower layer is repelled from the magnet while the upper layer is attracted towards the magnet. A Rayleigh-Taylor instability is achieved with application of a high gradient magnetic field. We further observed that increasing the dynamic viscosity of the fluid in each layer, increases the length-scale of the instability.
研究瑞利 - 泰勒不稳定性的传统技术包括使用压缩气体、火箭或线性电动机来反转重力的有效方向,并使较轻的流体朝着较重的流体加速。其他作者使用障碍物分隔重力不稳定分层,移除障碍物以启动流动。然而,在旋转分层情况下的抛物线形初始界面在实验上带来了重大技术难题。我们希望能够将分层加速至刚体旋转状态,然后再启动流动,以便研究旋转对瑞利 - 泰勒不稳定性的影响。我们在此采用的方法是利用超导磁体的磁场来操控两种液体的有效重量以启动流动。我们使用标准浮选技术创建重力稳定的两层分层。上层的密度低于下层,因此该系统是瑞利 - 泰勒稳定的。然后将此分层加速旋转,直到两层都处于刚体旋转状态并观察到抛物线形界面。与铁磁流体相比,这些实验使用的流体具有低磁化率,|χ| ~ 10 - 10。磁场的主要作用是对每层施加体力,从而改变有效重量。上层是弱顺磁性的,而下层是弱抗磁性的。施加磁场时,下层被磁体排斥,而上层被磁体吸引。通过施加高梯度磁场实现瑞利 - 泰勒不稳定性。我们还进一步观察到,增加每层流体的动态粘度会增加不稳定性的长度尺度。