Suppr超能文献

基于输出反馈的不确定耦合半线性抛物型偏微分方程的神经动态规划边界控制。

Output Feedback-Based Boundary Control of Uncertain Coupled Semilinear Parabolic PDE Using Neurodynamic Programming.

出版信息

IEEE Trans Neural Netw Learn Syst. 2018 Apr;29(4):1263-1274. doi: 10.1109/TNNLS.2017.2669941. Epub 2017 Mar 6.

Abstract

In this paper, neurodynamic programming-based output feedback boundary control of distributed parameter systems governed by uncertain coupled semilinear parabolic partial differential equations (PDEs) under Neumann or Dirichlet boundary control conditions is introduced. First, Hamilton-Jacobi-Bellman (HJB) equation is formulated in the original PDE domain and the optimal control policy is derived using the value functional as the solution of the HJB equation. Subsequently, a novel observer is developed to estimate the system states given the uncertain nonlinearity in PDE dynamics and measured outputs. Consequently, the suboptimal boundary control policy is obtained by forward-in-time estimation of the value functional using a neural network (NN)-based online approximator and estimated state vector obtained from the NN observer. Novel adaptive tuning laws in continuous time are proposed for learning the value functional online to satisfy the HJB equation along system trajectories while ensuring the closed-loop stability. Local uniformly ultimate boundedness of the closed-loop system is verified by using Lyapunov theory. The performance of the proposed controller is verified via simulation on an unstable coupled diffusion reaction process.

摘要

本文针对不确定耦合半线性抛物型偏微分方程(PDE)控制的分布参数系统,介绍了基于神经动态规划的输出反馈边界控制。首先,在原始 PDE 域中构建 Hamilton-Jacobi-Bellman(HJB)方程,并利用该值函数作为 HJB 方程的解推导出最优控制策略。随后,设计了一种新的观测器,用于在 PDE 动力学中的不确定性和测量输出的情况下估计系统状态。最后,通过使用基于神经网络(NN)的在线逼近器和从 NN 观测器获得的估计状态向量对价值函数进行正向时间估计,得到次优的边界控制策略。提出了连续时间的新型自适应调整律,用于在线学习价值函数,以满足系统轨迹上的 HJB 方程,同时确保闭环稳定性。通过使用 Lyapunov 理论验证了闭环系统的局部一致有界性。通过对不稳定耦合扩散反应过程的仿真验证了所提出控制器的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验