IEEE Trans Neural Netw Learn Syst. 2013 Jul;24(7):1061-73. doi: 10.1109/TNNLS.2013.2251747.
Helicopter unmanned aerial vehicles (UAVs) are widely used for both military and civilian operations. Because the helicopter UAVs are underactuated nonlinear mechanical systems, high-performance controller design for them presents a challenge. This paper introduces an optimal controller design via an output feedback for trajectory tracking of a helicopter UAV, using a neural network (NN). The output-feedback control system utilizes the backstepping methodology, employing kinematic and dynamic controllers and an NN observer. The online approximator-based dynamic controller learns the infinite-horizon Hamilton-Jacobi-Bellman equation in continuous time and calculates the corresponding optimal control input by minimizing a cost function, forward-in-time, without using the value and policy iterations. Optimal tracking is accomplished by using a single NN utilized for the cost function approximation. The overall closed-loop system stability is demonstrated using Lyapunov analysis. Finally, simulation results are provided to demonstrate the effectiveness of the proposed control design for trajectory tracking.
直升机无人机(UAV)广泛应用于军事和民用领域。由于直升机 UAV 是欠驱动非线性机械系统,因此为其设计高性能控制器是一项挑战。本文通过使用神经网络(NN)为直升机 UAV 的轨迹跟踪引入了一种基于输出反馈的最优控制器设计。输出反馈控制系统采用回溯法,使用运动学和动力学控制器以及 NN 观测器。在线逼近器基于动态控制器在连续时间内学习无限时域哈密顿-雅可比-贝尔曼方程,并通过最小化成本函数来计算相应的最优控制输入,而无需使用值和策略迭代。通过使用单个 NN 进行成本函数逼近来实现最优跟踪。通过 Lyapunov 分析证明了整个闭环系统的稳定性。最后,提供了仿真结果以证明所提出的轨迹跟踪控制设计的有效性。