Suppr超能文献

基于神经网络的直升机无人机最优自适应输出反馈控制。

Neural network-based optimal adaptive output feedback control of a helicopter UAV.

出版信息

IEEE Trans Neural Netw Learn Syst. 2013 Jul;24(7):1061-73. doi: 10.1109/TNNLS.2013.2251747.

Abstract

Helicopter unmanned aerial vehicles (UAVs) are widely used for both military and civilian operations. Because the helicopter UAVs are underactuated nonlinear mechanical systems, high-performance controller design for them presents a challenge. This paper introduces an optimal controller design via an output feedback for trajectory tracking of a helicopter UAV, using a neural network (NN). The output-feedback control system utilizes the backstepping methodology, employing kinematic and dynamic controllers and an NN observer. The online approximator-based dynamic controller learns the infinite-horizon Hamilton-Jacobi-Bellman equation in continuous time and calculates the corresponding optimal control input by minimizing a cost function, forward-in-time, without using the value and policy iterations. Optimal tracking is accomplished by using a single NN utilized for the cost function approximation. The overall closed-loop system stability is demonstrated using Lyapunov analysis. Finally, simulation results are provided to demonstrate the effectiveness of the proposed control design for trajectory tracking.

摘要

直升机无人机(UAV)广泛应用于军事和民用领域。由于直升机 UAV 是欠驱动非线性机械系统,因此为其设计高性能控制器是一项挑战。本文通过使用神经网络(NN)为直升机 UAV 的轨迹跟踪引入了一种基于输出反馈的最优控制器设计。输出反馈控制系统采用回溯法,使用运动学和动力学控制器以及 NN 观测器。在线逼近器基于动态控制器在连续时间内学习无限时域哈密顿-雅可比-贝尔曼方程,并通过最小化成本函数来计算相应的最优控制输入,而无需使用值和策略迭代。通过使用单个 NN 进行成本函数逼近来实现最优跟踪。通过 Lyapunov 分析证明了整个闭环系统的稳定性。最后,提供了仿真结果以证明所提出的轨迹跟踪控制设计的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验