School of Pharmacy, The University of Queensland, Woolloongabba 4102, QLD, Australia.
Biotechnol Adv. 2017 May-Jun;35(3):375-389. doi: 10.1016/j.biotechadv.2017.03.005. Epub 2017 Mar 11.
Traditional vaccination approaches (e.g. live attenuated or killed microorganisms) are among the most effective means to prevent the spread of infectious diseases. These approaches, nevertheless, have failed to yield successful vaccines against many important pathogens. To overcome this problem, methods have been developed to identify microbial components, against which protective immune responses can be elicited. Subunit antigens identified by these approaches enable the production of defined vaccines, with improved safety profiles. However, they are generally poorly immunogenic, necessitating their administration with potent immunostimulatory adjuvants. Since few safe and effective adjuvants are currently used in vaccines approved for human use, with those available displaying poor potency, or an inability to stimulate the types of immune responses required for vaccines against specific diseases (e.g. cytotoxic lymphocytes (CTLs) to treat cancers), the development of new vaccines will be aided by the availability of characterized platforms of new adjuvants, improving our capacity to rationally select adjuvants for different applications. One such approach, involves the addition of microbial components (pathogen-associated molecular patterns; PAMPs), that can stimulate strong immune responses, into subunit vaccine formulations. The conjugation of PAMPs to subunit antigens provides a means to greatly increase vaccine potency, by targeting immunostimulation and antigen to the same antigen presenting cell. Thus, methods that enable the efficient, and inexpensive production of antigen-adjuvant fusions represent an exciting mean to improve immunity towards subunit antigens. Herein we review four protein-based adjuvants (flagellin, bacterial lipoproteins, the extra domain A of fibronectin (EDA), and heat shock proteins (Hsps)), which can be genetically fused to antigens to enable recombinant production of antigen-adjuvant fusion proteins, with a focus on their mechanisms of action, structural or sequence requirements for activity, sequence modifications to enhance their activity or simplify production, adverse effects, and examples of vaccines in preclinical or human clinical trials.
传统的疫苗接种方法(例如活减毒或灭活微生物)是预防传染病传播最有效的手段之一。然而,这些方法未能成功针对许多重要病原体产生有效的疫苗。为了克服这个问题,已经开发出了识别微生物成分的方法,针对这些成分可以产生保护性免疫反应。通过这些方法鉴定的亚单位抗原能够生产具有改进的安全性特征的定义明确的疫苗。然而,它们通常免疫原性较差,需要与有效的免疫刺激性佐剂一起使用。由于目前批准用于人类使用的疫苗中使用的安全有效的佐剂很少,并且那些可用的佐剂显示出效力差,或者无法刺激针对特定疾病(例如用于治疗癌症的细胞毒性淋巴细胞 (CTL))所需的免疫反应类型,因此新疫苗的开发将得益于新型佐剂的特征化平台的可用性,提高我们为不同应用合理选择佐剂的能力。一种这样的方法涉及将能够刺激强烈免疫反应的微生物成分(病原体相关分子模式;PAMPs)添加到亚单位疫苗制剂中。将 PAMPs 缀合到亚单位抗原上提供了一种通过将免疫刺激和抗原靶向同一抗原呈递细胞来大大提高疫苗效力的方法。因此,能够实现抗原-佐剂融合的高效和廉价生产的方法代表了改善亚单位抗原免疫的一种令人兴奋的手段。本文综述了四种基于蛋白质的佐剂(鞭毛蛋白、细菌脂蛋白、纤维连接蛋白的额外结构域 A (EDA) 和热休克蛋白 (Hsps)),它们可以与抗原基因融合,以实现抗原-佐剂融合蛋白的重组生产,重点介绍它们的作用机制、活性的结构或序列要求、增强其活性或简化生产的序列修饰、不良反应以及临床前或临床试验中疫苗的例子。
ChemMedChem. 2013-1-11
Dev Biol Stand. 1998
Dev Biol Stand. 1997
Curr Protoc Microbiol. 2015-2-2
Clin Infect Dis. 2000-6
Mol Ther Nucleic Acids. 2025-4-8
Curr Issues Mol Biol. 2025-1-9
Pathog Dis. 2024-2-7
Glycoconj J. 2024-2