Alphazan T, Florian P, Thieuleux C
Univ. Grenoble Alpes, FR-38000 Grenoble, CEA, LETI, Minatec Campus, FR-38054 Grenoble Cedex 9, France and C2P2, CPE Lyon, 43 Bd du 11 Nov. 1918, 69616 Villeurbanne cedex, France.
Conditions Extrêmes et Matériaux: Haute Température et Irradiation, CNRS-UPR 3079, 1 d Avenue de la Recherche Scientifique, 45071 Orléans, Cedex 2, France.
Phys Chem Chem Phys. 2017 Mar 22;19(12):8595-8601. doi: 10.1039/c6cp08583k.
We report here the controlled preparation of SiO supported Sb-(mono)layers and their thorough characterization by in situ IR, solid-state NMR and elemental analyses. This study allows for the molecular understanding of the surface Sb species derived from the grafting of ethoxy and polyhedral oligomeric silsesquioxane antimony derivatives as mono- or bi-podal Sb(iii) surface species depending on the number of surface SiOH groups. This result is different from what was observed with the phosphorus analogue (POSS-P) that yielded P(v) species. A monolayer coverage of Sb species onto silica was also obtained using both POSS-Sb and the [Sb(OEt)] derivative with surface densities ranging from ∼0.3 Sb nm to 1.8 Sb nm, respectively. It is noteworthy that under optimized conditions, a layer of antimony species or suboxides on silica was produced using POSS-Sb without significant Sb loss, highlighting the protective properties of the POSS cage. These results open new perspectives for the controlled and non-destructive Sb-doping (Molecular Layer Doping) of semiconductors dedicated to nano-device applications.
我们在此报告了SiO负载的Sb(单)层的可控制备及其通过原位红外光谱、固态核磁共振和元素分析进行的全面表征。这项研究有助于从分子层面理解由乙氧基和多面体低聚倍半硅氧烷锑衍生物接枝形成的表面Sb物种,这些物种根据表面SiOH基团的数量以单足或双足Sb(iii)表面物种的形式存在。这一结果与磷类似物(POSS-P)的情况不同,后者产生的是P(v)物种。使用POSS-Sb和[Sb(OEt)]衍生物也获得了Sb物种在二氧化硅上的单层覆盖,表面密度分别为~0.3 Sb nm至1.8 Sb nm。值得注意的是,在优化条件下,使用POSS-Sb在二氧化硅上生成了一层锑物种或亚氧化物,且没有明显的Sb损失,突出了POSS笼的保护性能。这些结果为致力于纳米器件应用的半导体的可控且无损的Sb掺杂(分子层掺杂)开辟了新的前景。