Kuang Yaming Honors School, Nanjing University , Nanjing, Jiangsu 210023, China.
Department of Chemistry, University of Nebraska-Lincoln , Lincoln, Nebraska 68588, United States.
ACS Appl Mater Interfaces. 2017 Apr 5;9(13):12100-12108. doi: 10.1021/acsami.7b00904. Epub 2017 Mar 22.
Motivated from a recent experimental study on filling of a graphene nanocavity by iron membrane at room temperature (Science 2014, 343, 1228), we perform a comprehensive study of morphology changes of two-dimensional Fe membranes and iron carbides embedded in graphene nanocavities with specific sizes and shapes using the first-principles calculations and ab initio molecular dynamics simulations. Our simulations show that Fe atoms tend to gradually seal the graphene nanocavity via growing a metastable Fe membrane until the nanocavity is completely covered. Notably, a densely packed Fe membrane in the graphene nanocavity shows higher structural stability than a loosely packed one as long as more triangular lattices can form to release high tensile strain. The Fe membrane under high tensile strain tends to collapse and turns into a three-dimensional Fe cluster upon detaching from the edge. The structural transformation of Fe nanostructures follows the melting recrystallization mechanism at ambient temperatures in high vacuum. Moreover, the iron carbide can also exist in the graphene nanocavity and once formed can be highly stable even at 1200 K.
受近期在室温下通过铁膜填充石墨烯纳米腔的实验研究的启发(Science 2014, 343, 1228),我们使用第一性原理计算和从头分子动力学模拟对具有特定尺寸和形状的二维 Fe 膜和嵌入石墨烯纳米腔中的铁碳化物的形态变化进行了全面研究。我们的模拟表明,Fe 原子倾向于通过生长亚稳态 Fe 膜逐渐密封石墨烯纳米腔,直到纳米腔完全被覆盖。值得注意的是,只要能够形成更多的三角形晶格以释放高拉伸应变,纳米腔中紧密堆积的 Fe 膜比松散堆积的 Fe 膜具有更高的结构稳定性。在高拉伸应变下的 Fe 膜在从边缘脱离时容易塌缩并转变成三维 Fe 团簇。在高真空环境下,在环境温度下,Fe 纳米结构的结构转变遵循熔化再结晶机制。此外,碳化铁也可以存在于石墨烯纳米腔中,一旦形成,即使在 1200 K 下也能高度稳定。