Computational Biomedicine (IAS-5/INM-9), Forschungszentrum Jülich , Jülich 52425, Germany.
Università della Svizzera Italiana (USI) , Faculty of Informatics, Institute of Computational Science - Center for Computational Medicine in Cardiology, via G. Buffi 13, CH-6900, Lugano, Switzerland.
J Am Chem Soc. 2017 Apr 5;139(13):4780-4788. doi: 10.1021/jacs.6b12950. Epub 2017 Mar 24.
Understanding the structural and energetic requisites of ligand binding toward its molecular target is of paramount relevance in drug design. In recent years, atomistic free energy calculations have proven to be a valid tool to complement experiments in characterizing the thermodynamic and kinetic properties of protein/ligand interaction. Here, we investigate, through a recently developed metadynamics-based protocol, the unbinding mechanism of an inhibitor of the pharmacologically relevant target p38 MAP kinase. We provide a thorough description of the ligand unbinding pathway identifying the most stable binding mode and other thermodynamically relevant poses. From our simulations, we estimated the unbinding rate as k = 0.020 ± 0.011 s. This is in good agreement with the experimental value (k = 0.14 s). Next, we developed a Markov state model that allowed identifying the rate-limiting step of the ligand unbinding process. Our calculations further show that the solvation of the ligand and that of the active site play crucial roles in the unbinding process. This study paves the way to investigations on the unbinding dynamics of more complex p38 inhibitors and other pharmacologically relevant inhibitors in general, demonstrating that metadynamics can be a powerful tool in designing new drugs with engineered binding/unbinding kinetics.
了解配体与其分子靶标结合的结构和能量要求,对于药物设计至关重要。近年来,原子力场计算已被证明是一种有效的工具,可以补充实验,以表征蛋白质/配体相互作用的热力学和动力学性质。在这里,我们通过最近开发的基于元动力学的方案,研究了一种药理相关靶标 p38 MAP 激酶抑制剂的解吸机制。我们提供了对配体解吸途径的详细描述,确定了最稳定的结合模式和其他热力学相关的构象。通过我们的模拟,我们估计解吸速率为 k = 0.020 ± 0.011 s。这与实验值(k = 0.14 s)非常吻合。接下来,我们开发了一个马尔可夫状态模型,该模型允许确定配体解吸过程的限速步骤。我们的计算进一步表明,配体和活性位点的溶剂化在解吸过程中起着至关重要的作用。这项研究为研究更复杂的 p38 抑制剂和其他一般药理相关抑制剂的解吸动力学铺平了道路,证明元动力学可以成为设计具有工程化结合/解吸动力学的新药的有力工具。