Solid State Physics, Department of Engineering Sciences, Ångström Laboratory, Uppsala University, Sweden.
SOLVE Research and Consultancy AB, Lund, Sweden.
Nanoscale. 2017 Mar 23;9(12):4227-4235. doi: 10.1039/c7nr00023e.
The widespread use of magnetic nanoparticles in the biotechnical sector puts new demands on fast and quantitative characterization techniques for nanoparticle dispersions. In this work, we report the use of asymmetric flow field-flow fractionation (AF4) and ferromagnetic resonance (FMR) to study the properties of a commercial magnetic nanoparticle dispersion. We demonstrate the effectiveness of both techniques when subjected to a dispersion with a bimodal size/magnetic property distribution: i.e., a small superparamagnetic fraction, and a larger blocked fraction of strongly coupled colloidal nanoclusters. We show that the oriented attachment of primary nanocrystals into colloidal nanoclusters drastically alters their static, dynamic, and magnetic resonance properties. Finally, we show how the FMR spectra are influenced by dynamical effects; agglomeration of the superparamagnetic fraction leads to reversible line-broadening; rotational alignment of the suspended nanoclusters results in shape-dependent resonance shifts. The AF4 and FMR measurements described herein are fast and simple, and therefore suitable for quality control procedures in commercial production of magnetic nanoparticles.
在生物技术领域,磁性纳米粒子的广泛应用对纳米粒子分散体的快速定量表征技术提出了新的要求。在这项工作中,我们报告了使用不对称流场流分离(AF4)和铁磁共振(FMR)来研究商业磁性纳米粒子分散体的性质。我们证明了这两种技术在具有双峰尺寸/磁性分布的分散体中的有效性:即小的超顺磁部分和强耦合胶体纳米团簇的较大受阻部分。我们表明,初级纳米晶体的定向附着将极大地改变它们的静态、动态和磁共振性质。最后,我们展示了 FMR 光谱如何受到动态效应的影响;超顺磁部分的团聚导致可逆的线宽展宽;悬浮纳米团簇的旋转排列导致与形状相关的共振位移。本文所述的 AF4 和 FMR 测量快速且简单,因此适合商业生产磁性纳米粒子的质量控制程序。
J Colloid Interface Sci. 2016-1-15
J Phys Condens Matter. 2011-7-15
Phys Chem Chem Phys. 2021-2-4
J Nanobiotechnology. 2022-7-30
Molecules. 2017-12-12