Bykanov A E, Pitskhelauri D I, Batalov A I, Pronin I N, Shkarubo M A, Dobrovol'sky G F, Kobyakov G L, Buklina S B, Puchkov V L, Zakharova N E, Smirnov A S, Sanikidze A Z, Gol'bin D A, Pogosbekyan E L, Kudieva E S, Shkatova A M, Potapov A A
Burdenko Neurosurgical Institute, Moscow, Russia.
Zh Vopr Neirokhir Im N N Burdenko. 2017;81(1):26-38. doi: 10.17116/neiro201780726-38.
To study the peri-insular association tract anatomy and define the permissible anatomical boundaries for resection of glial insular tumors with allowance for the surgical anatomy of the peri-insular association tracts.
In an anatomic study of the superior longitudinal fascicle system (SLF I, SLF II, SLF III, arcuate fascicle), we used 12 anatomical specimens (6 left and 6 right hemispheres) prepared according to the Klingler's fiber dissection technique. To confirm the dissection data, we used MR tractography (HARDI-CSD-tractography) of the conduction tracts, which was performed in two healthy volunteers.
Except the SLF I (identified in 7 hemispheres by fiber dissection), all fascicles of the SLF system were found in all investigated hemispheres by both fiber dissection and MR tractography. The transcortical approach to the insula through the frontal and (or) parietal operculum is associated with a significant risk of transverse transection of the SLF III fibers passing in the frontal and parietal opercula. The most optimal area for the transcortical approach to the insula is the anterior third of the superior temporal gyrus that lacks important association tracts and, consequently, a risk of their injury. The superior peri-insular sulcus is an intraoperative landmark for the transsylvian approach, which enables identification of the SLF II and arcuate fascicle in the surgical wound.
Detailed knowledge of the peri-insular association tract anatomy is the prerequisite for neurosurgery in the insular region. Our findings facilitate correct identification of both the site for cerebral operculum dissection upon the transcortical approach and the intraoperative landmarks for locating the association tracts in the surgical wound upon the transsylvian approach to the insula.
研究岛周联合纤维束解剖结构,并确定在考虑岛周联合纤维束手术解剖结构的情况下,切除岛叶胶质瘤的可允许解剖边界。
在一项关于上纵束系统(SLF I、SLF II、SLF III、弓状束)的解剖学研究中,我们使用了12个按照克林格勒纤维解剖技术制备的解剖标本(6个左侧半球和6个右侧半球)。为了证实解剖数据,我们对两名健康志愿者进行了传导束的磁共振纤维束成像(HARDI-CSD纤维束成像)。
除了SLF I(通过纤维解剖在7个半球中识别出),SLF系统的所有纤维束通过纤维解剖和磁共振纤维束成像在所有研究的半球中均被发现。经额叶和(或)顶叶盖进入岛叶的经皮质入路,有横断经过额叶和顶叶盖的SLF III纤维的显著风险。经皮质进入岛叶的最佳区域是颞上回前三分之一,该区域缺乏重要的联合纤维束,因此不存在损伤它们的风险。岛周上沟是经外侧裂入路的术中标志,可在手术切口中识别出SLF II和弓状束。
详细了解岛周联合纤维束解剖结构是岛叶区域神经外科手术的前提条件。我们的研究结果有助于在经皮质入路时正确识别脑盖切开的部位,以及在经外侧裂入路至岛叶时确定手术切口中联合纤维束的术中标志。