Suppr超能文献

一个可积辛双有理四维映射的交换对的大型族的构造。

A construction of a large family of commuting pairs of integrable symplectic birational four-dimensional maps.

作者信息

Petrera Matteo, Suris Yuri B

机构信息

Institut für Mathematik, MA 7-1 , Technische Universität Berlin , Str. des 17. Juni 136, Berlin 10623, Germany.

出版信息

Proc Math Phys Eng Sci. 2017 Feb;473(2198):20160535. doi: 10.1098/rspa.2016.0535.

Abstract

We give a construction of completely integrable four-dimensional Hamiltonian systems with cubic Hamilton functions. Applying to the corresponding pairs of commuting quadratic Hamiltonian vector fields the so called Kahan-Hirota-Kimura discretization scheme, we arrive at pairs of birational four-dimensional maps. We show that these maps are symplectic with respect to a symplectic structure that is a perturbation of the standard symplectic structure on [Formula: see text], and possess two independent integrals of motion, which are perturbations of the original Hamilton functions and which are in involution with respect to the perturbed symplectic structure. Thus, these maps are completely integrable in the Liouville-Arnold sense. Moreover, under a suitable normalization of the original pairs of vector fields, the pairs of maps commute and share the invariant symplectic structure and the two integrals of motion.

摘要

我们给出了具有三次哈密顿函数的完全可积四维哈密顿系统的一种构造。将所谓的卡汉 - 广田 - 木村离散化方案应用于相应的对易二次哈密顿向量场对,我们得到了双有理四维映射对。我们表明,这些映射相对于一个辛结构是辛的,该辛结构是对(\mathbb{R}^4)上标准辛结构的扰动,并且具有两个独立的运动积分,它们是原始哈密顿函数的扰动,并且相对于扰动后的辛结构是对合的。因此,这些映射在刘维尔 - 阿诺德意义下是完全可积的。此外,在对原始向量场对进行适当归一化的情况下,映射对是对易的,并且共享不变辛结构和两个运动积分。

相似文献

2
Geometry of the Kahan discretizations of planar quadratic Hamiltonian systems.平面二次哈密顿系统的卡汉离散化的几何结构。
Proc Math Phys Eng Sci. 2019 Mar;475(2223):20180761. doi: 10.1098/rspa.2018.0761. Epub 2019 Mar 13.
5
Symplectic integrators for spin systems.自旋系统的辛积分器。
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Jun;89(6):061301. doi: 10.1103/PhysRevE.89.061301. Epub 2014 Jun 13.
8
Arithmetical method to detect integrability in maps.用于检测映射中可积性的算术方法。
Phys Rev Lett. 2003 Jan 24;90(3):034102. doi: 10.1103/PhysRevLett.90.034102.
9
Rotationally invariant ensembles of integrable matrices.旋转不变的可积矩阵系综。
Phys Rev E. 2016 May;93(5):052114. doi: 10.1103/PhysRevE.93.052114. Epub 2016 May 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验