Suppr超能文献

用于识别参数线性模型的高效最小角回归

Efficient least angle regression for identification of linear-in-the-parameters models.

作者信息

Zhao Wanqing, Beach Thomas H, Rezgui Yacine

机构信息

Cardiff School of Engineering, Cardiff University , Cardiff CF24 3AA, UK.

出版信息

Proc Math Phys Eng Sci. 2017 Feb;473(2198):20160775. doi: 10.1098/rspa.2016.0775.

Abstract

Least angle regression, as a promising model selection method, differentiates itself from conventional stepwise and stagewise methods, in that it is neither too greedy nor too slow. It is closely related to norm optimization, which has the advantage of low prediction variance through sacrificing part of model bias property in order to enhance model generalization capability. In this paper, we propose an efficient least angle regression algorithm for model selection for a large class of linear-in-the-parameters models with the purpose of accelerating the model selection process. The entire algorithm works completely in a recursive manner, where the correlations between model terms and residuals, the evolving directions and other pertinent variables are derived explicitly and updated successively at every subset selection step. The model coefficients are only computed when the algorithm finishes. The direct involvement of matrix inversions is thereby relieved. A detailed computational complexity analysis indicates that the proposed algorithm possesses significant computational efficiency, compared with the original approach where the well-known efficient Cholesky decomposition is involved in solving least angle regression. Three artificial and real-world examples are employed to demonstrate the effectiveness, efficiency and numerical stability of the proposed algorithm.

摘要

最小角回归作为一种很有前景的模型选择方法,有别于传统的逐步回归和阶段wise回归方法,因为它既不过于贪婪也不过于缓慢。它与范数优化密切相关,范数优化的优点是通过牺牲部分模型偏差特性来降低预测方差,从而提高模型的泛化能力。在本文中,我们提出了一种高效的最小角回归算法,用于一大类参数线性模型的模型选择,目的是加速模型选择过程。整个算法完全以递归方式运行,在每个子集选择步骤中,显式推导并依次更新模型项与残差之间的相关性、演化方向和其他相关变量。仅在算法结束时才计算模型系数。从而避免了直接进行矩阵求逆运算。详细的计算复杂度分析表明,与原始方法相比,所提出的算法具有显著的计算效率,原始方法在求解最小角回归时涉及著名的高效Cholesky分解。使用三个人工和实际例子来证明所提出算法的有效性、效率和数值稳定性。

相似文献

2
Online Identification of Nonlinear Systems With Separable Structure.具有可分离结构的非线性系统的在线识别
IEEE Trans Neural Netw Learn Syst. 2024 Jun;35(6):8695-8701. doi: 10.1109/TNNLS.2022.3215756. Epub 2024 Jun 3.
4
Recursive Variable Projection Algorithm for a Class of Separable Nonlinear Models.一类可分离非线性模型的递归变量投影算法
IEEE Trans Neural Netw Learn Syst. 2021 Nov;32(11):4971-4982. doi: 10.1109/TNNLS.2020.3026482. Epub 2021 Oct 27.
6
Efficient test-based variable selection for high-dimensional linear models.高维线性模型中基于检验的高效变量选择
J Multivar Anal. 2018 Jul;166:17-31. doi: 10.1016/j.jmva.2018.01.003. Epub 2018 Feb 14.

本文引用的文献

1
ConvexLAR: An Extension of Least Angle Regression.凸LAR:最小角回归的扩展
J Comput Graph Stat. 2015 Jul 1;24(3):603-626. doi: 10.1080/10618600.2014.962700. Epub 2015 Sep 16.
2
A Hybrid Constructive Algorithm for Single-Layer Feedforward Networks Learning.单层前馈网络学习的混合构造算法。
IEEE Trans Neural Netw Learn Syst. 2015 Aug;26(8):1659-68. doi: 10.1109/TNNLS.2014.2350957. Epub 2014 Sep 9.
3
An incremental design of radial basis function networks.径向基函数网络的增量设计。
IEEE Trans Neural Netw Learn Syst. 2014 Oct;25(10):1793-803. doi: 10.1109/TNNLS.2013.2295813. Epub 2014 Feb 11.
4
Machine learning methods in the computational biology of cancer.癌症计算生物学中的机器学习方法。
Proc Math Phys Eng Sci. 2014 Jul 8;470(2167):20140081. doi: 10.1098/rspa.2014.0081.
5
Adaptive computation algorithm for RBF neural network.RBF 神经网络的自适应计算算法。
IEEE Trans Neural Netw Learn Syst. 2012 Feb;23(2):342-7. doi: 10.1109/TNNLS.2011.2178559.
8
Online modeling with tunable RBF network.在线可调 RBF 网络建模。
IEEE Trans Cybern. 2013 Jun;43(3):935-47. doi: 10.1109/TSMCB.2012.2218804. Epub 2012 Oct 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验