Suppr超能文献

蛋白质重塑因子作为神经退行性疾病的潜在治疗方法。

Protein-Remodeling Factors As Potential Therapeutics for Neurodegenerative Disease.

作者信息

Jackrel Meredith E, Shorter James

机构信息

Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania Philadelphia, PA, USA.

出版信息

Front Neurosci. 2017 Feb 28;11:99. doi: 10.3389/fnins.2017.00099. eCollection 2017.

Abstract

Protein misfolding is implicated in numerous neurodegenerative disorders including amyotrophic lateral sclerosis, Parkinson's disease, Alzheimer's disease, and Huntington's disease. A unifying feature of patients with these disorders is the accumulation of deposits comprised of misfolded protein. Aberrant protein folding can cause toxicity through a loss or gain of protein function, or both. An intriguing therapeutic approach to counter these disorders is the application of protein-remodeling factors to resolve these misfolded conformers and return the proteins to their native fold and function. Here, we describe the application of protein-remodeling factors to alleviate protein misfolding in neurodegenerative disease. We focus on Hsp104, Hsp110/Hsp70/Hsp40, NMNAT, and HtrA1, which can prevent and reverse protein aggregation. While many of these protein-remodeling systems are highly promising, their activity can be limited. Thus, engineering protein-remodeling factors to enhance their activity could be therapeutically valuable. Indeed, engineered Hsp104 variants suppress neurodegeneration in animal models, which opens the way to novel therapeutics and mechanistic probes to help understand neurodegenerative disease.

摘要

蛋白质错误折叠与多种神经退行性疾病有关,包括肌萎缩侧索硬化症、帕金森病、阿尔茨海默病和亨廷顿舞蹈症。这些疾病患者的一个共同特征是由错误折叠蛋白质组成的沉积物的积累。异常的蛋白质折叠可通过蛋白质功能的丧失或获得,或两者兼而有之,导致毒性。一种对抗这些疾病的有趣治疗方法是应用蛋白质重塑因子来解决这些错误折叠的构象,并使蛋白质恢复其天然折叠和功能。在这里,我们描述了蛋白质重塑因子在减轻神经退行性疾病中蛋白质错误折叠方面的应用。我们重点关注Hsp104、Hsp110/Hsp70/Hsp40、NMNAT和HtrA1,它们可以预防和逆转蛋白质聚集。虽然这些蛋白质重塑系统中的许多都非常有前景,但它们的活性可能受到限制。因此,对蛋白质重塑因子进行工程改造以增强其活性可能具有治疗价值。事实上,工程化的Hsp104变体可抑制动物模型中的神经退行性变,这为新型治疗方法和机制探针开辟了道路,有助于理解神经退行性疾病。

相似文献

1
Protein-Remodeling Factors As Potential Therapeutics for Neurodegenerative Disease.
Front Neurosci. 2017 Feb 28;11:99. doi: 10.3389/fnins.2017.00099. eCollection 2017.
2
Engineering therapeutic protein disaggregases.
Mol Biol Cell. 2016 May 15;27(10):1556-60. doi: 10.1091/mbc.E15-10-0693.
3
Designer protein disaggregases to counter neurodegenerative disease.
Curr Opin Genet Dev. 2017 Jun;44:1-8. doi: 10.1016/j.gde.2017.01.008. Epub 2017 Feb 14.
4
Engineering enhanced protein disaggregases for neurodegenerative disease.
Prion. 2015;9(2):90-109. doi: 10.1080/19336896.2015.1020277.
5
Potentiated Hsp104 variants suppress toxicity of diverse neurodegenerative disease-linked proteins.
Dis Model Mech. 2014 Oct;7(10):1175-84. doi: 10.1242/dmm.016113. Epub 2014 Jul 25.
6
Isolating potentiated Hsp104 variants using yeast proteinopathy models.
J Vis Exp. 2014 Nov 11(93):e52089. doi: 10.3791/52089.
7
Hsp104: a weapon to combat diverse neurodegenerative disorders.
Neurosignals. 2008;16(1):63-74. doi: 10.1159/000109760. Epub 2007 Dec 5.
8
AAA+ Protein-Based Technologies to Counter Neurodegenerative Disease.
Biophys J. 2019 Apr 23;116(8):1380-1385. doi: 10.1016/j.bpj.2019.03.007. Epub 2019 Mar 22.
9
Induction of molecular chaperones as a therapeutic strategy for the polyglutamine diseases.
Curr Pharm Biotechnol. 2010 Feb;11(2):188-97. doi: 10.2174/138920110790909650.
10
Therapeutic strategies for targeting neurodegenerative protein misfolding disorders.
Curr Opin Chem Biol. 2018 Jun;44:66-74. doi: 10.1016/j.cbpa.2018.05.018. Epub 2018 Jun 11.

引用本文的文献

2
Exposed Hsp70-binding site impacts yeast Sup35 prion disaggregation and propagation.
Proc Natl Acad Sci U S A. 2024 Dec 17;121(51):e2318162121. doi: 10.1073/pnas.2318162121. Epub 2024 Dec 10.
3
Assessment of the therapeutic potential of Hsp70 activator against prion diseases using and models.
Front Cell Dev Biol. 2024 Jul 22;12:1411529. doi: 10.3389/fcell.2024.1411529. eCollection 2024.
5
Probing the drivers of biofilm protein amyloidogenesis and disrupting biofilms with engineered protein disaggregases.
mBio. 2023 Aug 31;14(4):e0058723. doi: 10.1128/mbio.00587-23. Epub 2023 May 17.
6
Clearance of variant Creutzfeldt-Jakob disease prions in vivo by the Hsp70 disaggregase system.
Brain. 2022 Sep 14;145(9):3236-3249. doi: 10.1093/brain/awac144.
7
The mouse nicotinamide mononucleotide adenylyltransferase chaperones diverse pathological amyloid client proteins.
J Biol Chem. 2022 May;298(5):101912. doi: 10.1016/j.jbc.2022.101912. Epub 2022 Apr 7.
8
Hsp104 N-terminal domain interaction with substrates plays a regulatory role in protein disaggregation.
FEBS J. 2022 Sep;289(17):5359-5377. doi: 10.1111/febs.16441. Epub 2022 Mar 30.
9
Molecular determinants and modifiers of Matrin-3 toxicity, condensate dynamics, and droplet morphology.
iScience. 2022 Feb 11;25(3):103900. doi: 10.1016/j.isci.2022.103900. eCollection 2022 Mar 18.
10
Illuminating amyloid fibrils: Fluorescence-based single-molecule approaches.
Comput Struct Biotechnol J. 2021 Aug 13;19:4711-4724. doi: 10.1016/j.csbj.2021.08.017. eCollection 2021.

本文引用的文献

1
Alternative modes of client binding enable functional plasticity of Hsp70.
Nature. 2016 Nov 17;539(7629):448-451. doi: 10.1038/nature20137. Epub 2016 Oct 26.
2
The antibody aducanumab reduces Aβ plaques in Alzheimer's disease.
Nature. 2016 Sep 1;537(7618):50-6. doi: 10.1038/nature19323.
3
Spiral architecture of the Hsp104 disaggregase reveals the basis for polypeptide translocation.
Nat Struct Mol Biol. 2016 Sep;23(9):830-7. doi: 10.1038/nsmb.3277. Epub 2016 Aug 1.
4
Engineering therapeutic protein disaggregases.
Mol Biol Cell. 2016 May 15;27(10):1556-60. doi: 10.1091/mbc.E15-10-0693.
5
NMNAT2:HSP90 Complex Mediates Proteostasis in Proteinopathies.
PLoS Biol. 2016 Jun 2;14(6):e1002472. doi: 10.1371/journal.pbio.1002472. eCollection 2016 Jun.
6
Current and future treatment of amyloid diseases.
J Intern Med. 2016 Aug;280(2):177-202. doi: 10.1111/joim.12506. Epub 2016 May 10.
7
Extended survival of misfolded G85R SOD1-linked ALS mice by transgenic expression of chaperone Hsp110.
Proc Natl Acad Sci U S A. 2016 May 10;113(19):5424-8. doi: 10.1073/pnas.1604885113. Epub 2016 Apr 25.
8
Engineering and Evolution of Molecular Chaperones and Protein Disaggregases with Enhanced Activity.
Front Mol Biosci. 2016 Mar 15;3:8. doi: 10.3389/fmolb.2016.00008. eCollection 2016.
9
C9orf72 is required for proper macrophage and microglial function in mice.
Science. 2016 Mar 18;351(6279):1324-9. doi: 10.1126/science.aaf1064.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验