Suppr超能文献

创建用于研究复杂多孔介质中多相流的双重孔隙度和双重深度微模型。

Creation of a dual-porosity and dual-depth micromodel for the study of multiphase flow in complex porous media.

机构信息

Stanford University, Energy Resources Engineering, 367 Panama St, room 50, Stanford, California, USA.

出版信息

Lab Chip. 2017 Apr 11;17(8):1462-1474. doi: 10.1039/c6lc01343k.

Abstract

Silicon-based microfluidic devices, so-called micromodels in this application, are particularly useful laboratory tools for the direct visualization of fluid flow revealing pore-scale mechanisms controlling flow and transport phenomena in natural porous media. Current microfluidic devices with uniform etched depths, however, are limited when representing complex geometries such as the multiple-scale pore sizes common in carbonate rocks. In this study, we successfully developed optimized sequential photolithography to etch micropores (1.5 to 21 μm width) less deeply than the depth of wider macropores (>21 μm width) to improve the structural realism of an existing single-depth micromodel with a carbonate-derived pore structure. Surface profilimetry illustrates the configuration of the dual-depth dual-porosity micromodel and is used to estimate the corresponding pore volume change for the dual-depth micromodel compared to the equivalent uniform- or single-depth model. The flow characteristics of the dual-depth dual-porosity micromodel were characterized using micro-particle image velocimetry (μ-PIV), relative permeability measurements, and pore-scale observations during imbibition and drainage processes. The μ-PIV technique provides insights into the fluid dynamics within microfluidic channels and relevant fluid velocities controlled predominantly by changes in etching depth. In addition, the reduction of end-point relative permeability for both oil and water in the new dual-depth dual-porosity micromodel compared to the equivalent single-depth micromodel implies more realistic capillary forces occurring in the new dual-depth micromodel. Throughout the imbibition and drainage experiments, the flow behaviors of single- and dual-depth micromodels are further differentiated using direct visualization of the trapped non-wetting phase and the preferential mobilization of the wetting phase in the dual-depth micromodel. The visual observations agree with the relative permeability results. These findings indicate that dual-porosity and dual-depth micromodels have enhanced physical realism that is pertinent to oil recovery processes in complex porous media.

摘要

基于硅的微流控器件,在这种应用中称为微模型,是直接可视化流体流动的特别有用的实验室工具,可以揭示控制天然多孔介质中流动和传输现象的孔隙尺度机制。然而,当前具有均匀刻蚀深度的微流控器件在表示复杂几何形状方面存在限制,例如碳酸盐岩中常见的多尺度孔隙大小。在这项研究中,我们成功地开发了优化的顺序光刻技术,以刻蚀微孔(1.5 至 21μm 宽度),其深度小于更宽的大孔(>21μm 宽度)的深度,以改善具有碳酸盐衍生孔隙结构的现有单一深度微模型的结构真实性。表面轮廓测量法说明了双深度双孔隙率微模型的配置,并用于估计双深度微模型相对于等效的均匀或单一深度模型的相应孔隙体积变化。使用微粒子图像测速(μ-PIV)、相对渗透率测量和吸吮和排水过程中的孔隙尺度观测,对双深度双孔隙率微模型的流动特性进行了表征。μ-PIV 技术提供了对微流道内流体动力学和主要由刻蚀深度变化控制的相关流体速度的深入了解。此外,与等效的单一深度微模型相比,新的双深度双孔隙率微模型中油和水的端点相对渗透率降低意味着新的双深度微模型中发生了更现实的毛管力。在整个吸吮和排水实验过程中,通过直接观察被困的非润湿相和双深度微模型中润湿相的优先驱替,进一步区分了单一和双深度微模型的流动行为。可视化观察结果与相对渗透率结果一致。这些发现表明,双孔隙率和双深度微模型具有增强的物理真实性,与复杂多孔介质中的采油过程相关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验