Shi J, Mahr C, Murshed M M, Gesing T M, Rosenauer A, Bäumer M, Wittstock A
Institute of Applied and Physical Chemistry and Center for Environmental Research and Sustainable Technology, University Bremen, Leobener Str. UFT, 28359 Bremen, Germany.
Institute of Solid State Physics, University Bremen, Bremen, Germany.
Phys Chem Chem Phys. 2017 Mar 29;19(13):8880-8888. doi: 10.1039/c6cp08849j.
Methanol as a green and renewable resource can be used to generate hydrogen by reforming, i.e., its catalytic oxidation with water. In combination with a fuel cell this hydrogen can be converted into electrical energy, a favorable concept, in particular for mobile applications. Its realization requires the development of novel types of structured catalysts, applicable in small scale reactor designs. Here, three different types of such catalysts were investigated for the steam reforming of methanol (SRM). Oxides such as TiO and CeO and mixtures thereof (CeTiO) were deposited inside a bulk nanoporous gold (npAu) material using wet chemical impregnation procedures. Transmission electron and scanning electron microscopy reveal oxide nanoparticles (1-2 nm in size) abundantly covering the strongly curved surface of the nanoporous gold host (ligaments and pores on the order of 40 nm in size). These catalysts were investigated in a laboratory scaled flow reactor. First conversion of methanol was detected at 200 °C. The measured turn over frequency at 300 °C of the CeO/npAu catalyst was 0.06 s. Parallel investigation by in situ infrared spectroscopy (DRIFTS) reveals that the activation of water and the formation of OH are the key to the activity/selectivity of the catalysts. While all catalysts generate sufficient OH to prevent complete dehydrogenation of methanol to CO, only the most active catalysts (e.g., CeO/npAu) show direct reaction with formic acid and its decomposition to CO and H. The combination of flow reactor studies and in operando DRIFTS, thus, opens the door to further development of this type of catalyst.
甲醇作为一种绿色可再生资源,可通过重整反应,即与水进行催化氧化反应来制氢。与燃料电池相结合,这种氢气可转化为电能,这是一个非常不错的概念,尤其适用于移动应用领域。要实现这一目标,需要开发适用于小规模反应器设计的新型结构化催化剂。在此,对三种不同类型的此类催化剂进行了甲醇蒸汽重整反应(SRM)的研究。采用湿化学浸渍法将TiO和CeO等氧化物及其混合物(CeTiO)沉积在块状纳米多孔金(npAu)材料内部。透射电子显微镜和扫描电子显微镜显示,氧化物纳米颗粒(尺寸为1 - 2纳米)大量覆盖在纳米多孔金载体的强弯曲表面上(韧带和孔隙尺寸约为40纳米)。在实验室规模的流动反应器中对这些催化剂进行了研究。在200°C时检测到甲醇的首次转化。CeO/npAu催化剂在300°C时测得的周转频率为0.06 s⁻¹。通过原位红外光谱(DRIFTS)进行的平行研究表明,水的活化和OH的形成是催化剂活性/选择性的关键。虽然所有催化剂都能产生足够的OH以防止甲醇完全脱氢生成CO,但只有活性最高的催化剂(例如CeO/npAu)显示出与甲酸的直接反应及其分解为CO和H₂。因此,流动反应器研究和原位DRIFTS的结合为这类催化剂的进一步开发打开了大门。