Suppr超能文献

人类空间注意力精细尺度的预备编码

Preparatory Encoding of the Fine Scale of Human Spatial Attention.

作者信息

Voytek Bradley, Samaha Jason, Rolle Camarin E, Greenberg Zachery, Gill Navdeep, Porat Shai, Kader Tahim, Rahman Sabahat, Malzyner Rick, Gazzaley Adam

机构信息

1 University of California, San Francisco.

2 University of California, San Diego.

出版信息

J Cogn Neurosci. 2017 Jul;29(7):1302-1310. doi: 10.1162/jocn_a_01124. Epub 2017 Mar 15.

Abstract

Our attentional focus is constantly shifting: In one moment, our attention may be intently concentrated on a specific spot, whereas in another moment we might spread our attention more broadly. Although much is known about the mechanisms by which we shift our visual attention from place to place, relatively little is known about how we shift the aperture of attention from more narrowly to more broadly focused. Here we introduce a novel attentional distribution task to examine the neural mechanisms underlying this process. In this task, participants are presented with an informative cue that indicates the location of an upcoming target. This cue can be perfectly predictive of the exact target location, or it can indicate-with varying degrees of certainty-approximately where the target might appear. This cue is followed by a preparatory period in which there is nothing on the screen except a central fixation cross. Using scalp EEG, we examined neural activity during this preparatory period. We find that, with decreasing certainty regarding the precise location of the impending target, participant RTs increased whereas target identification accuracy decreased. Additionally, the multivariate pattern of preparatory period visual cortical alpha (8-12 Hz) activity encoded attentional distribution. This alpha encoding was predictive of behavioral accuracy and RT nearly 1 sec later. These results offer insight into the neural mechanisms underlying how we use information to guide our attentional distribution and how that influences behavior.

摘要

我们的注意力焦点在不断变化

在某一时刻,我们的注意力可能会专注于一个特定的点,而在另一时刻,我们可能会更广泛地分散注意力。尽管我们对视觉注意力在不同位置之间转移的机制已经了解很多,但对于我们如何将注意力的范围从更狭窄的焦点转移到更广泛的焦点,却知之甚少。在这里,我们引入了一种新颖的注意力分配任务,以研究这一过程背后的神经机制。在这个任务中,向参与者呈现一个信息提示,该提示指示即将出现的目标的位置。这个提示可以完美地预测目标的确切位置,或者它可以以不同程度的确定性指示目标可能出现的大致位置。这个提示之后是一个准备期,在此期间屏幕上除了一个中央固定十字外没有其他东西。我们使用头皮脑电图来检查这个准备期的神经活动。我们发现,随着对即将出现的目标的精确位置的确定性降低,参与者的反应时间增加,而目标识别准确率降低。此外,准备期视觉皮层阿尔法(8 - 12赫兹)活动的多变量模式编码了注意力分配。这种阿尔法编码在近1秒后可预测行为准确率和反应时间。这些结果为我们如何利用信息来指导注意力分配以及这如何影响行为背后的神经机制提供了见解。

相似文献

1
Preparatory Encoding of the Fine Scale of Human Spatial Attention.
J Cogn Neurosci. 2017 Jul;29(7):1302-1310. doi: 10.1162/jocn_a_01124. Epub 2017 Mar 15.
2
Prismatic Adaptation Modulates Oscillatory EEG Correlates of Motor Preparation but Not Visual Attention in Healthy Participants.
J Neurosci. 2018 Jan 31;38(5):1189-1201. doi: 10.1523/JNEUROSCI.1422-17.2017. Epub 2017 Dec 18.
3
Preparatory α-band oscillations reflect spatial gating independently of predictions regarding target identity.
J Neurophysiol. 2017 Mar 1;117(3):1385-1394. doi: 10.1152/jn.00856.2016. Epub 2017 Jan 11.
4
The role of top-down spatial attention in contingent attentional capture.
Psychophysiology. 2016 May;53(5):650-62. doi: 10.1111/psyp.12615. Epub 2016 Feb 16.
5
The effects of L-theanine on alpha-band oscillatory brain activity during a visuo-spatial attention task.
Brain Topogr. 2009 Jun;22(1):44-51. doi: 10.1007/s10548-008-0068-z. Epub 2008 Oct 9.
6
Indexing the graded allocation of visuospatial attention using anticipatory alpha oscillations.
J Neurophysiol. 2011 Mar;105(3):1318-26. doi: 10.1152/jn.00653.2010. Epub 2011 Jan 12.
7
Isolating event-related potential components associated with voluntary control of visuo-spatial attention.
Brain Res. 2008 Aug 28;1227:96-109. doi: 10.1016/j.brainres.2008.06.034. Epub 2008 Jun 20.
8
Cortical and Subcortical Coordination of Visual Spatial Attention Revealed by Simultaneous EEG-fMRI Recording.
J Neurosci. 2017 Aug 16;37(33):7803-7810. doi: 10.1523/JNEUROSCI.0326-17.2017. Epub 2017 Jul 11.
9
Anticipatory alpha oscillation predicts attentional selection and hemodynamic response.
Hum Brain Mapp. 2019 Aug 15;40(12):3606-3619. doi: 10.1002/hbm.24619. Epub 2019 May 7.
10
Predicting N2pc from anticipatory HbO activity during sustained visuospatial attention: a concurrent fNIRS-ERP study.
Neuroimage. 2015 Jun;113:225-34. doi: 10.1016/j.neuroimage.2015.03.044. Epub 2015 Mar 24.

引用本文的文献

2
Spontaneous slow cortical potentials and brain oscillations independently influence conscious visual perception.
PLoS Biol. 2025 Jan 16;23(1):e3002964. doi: 10.1371/journal.pbio.3002964. eCollection 2025 Jan.
3
Conflicting Sensory Information Sharpens the Neural Representations of Early Selective Visuospatial Attention.
J Neurosci. 2024 Aug 14;44(33):e2012232024. doi: 10.1523/JNEUROSCI.2012-23.2024.
4
Sustained attention and the flash grab effect.
J Vis. 2024 Feb 1;24(2):6. doi: 10.1167/jov.24.2.6.
5
Dissociable Neural Mechanisms Underlie the Effects of Attention on Visual Appearance and Response Bias.
J Neurosci. 2023 Sep 27;43(39):6628-6652. doi: 10.1523/JNEUROSCI.2192-22.2023. Epub 2023 Aug 24.
6
Prior Knowledge Uses Prestimulus Alpha Band Oscillations and Persistent Poststimulus Neural Templates for Conscious Perception.
J Neurosci. 2023 Aug 30;43(35):6164-6175. doi: 10.1523/JNEUROSCI.0263-23.2023. Epub 2023 Aug 3.
7
Age-related trends in aperiodic EEG activity and alpha oscillations during early- to middle-childhood.
Neuroimage. 2023 Apr 1;269:119925. doi: 10.1016/j.neuroimage.2023.119925. Epub 2023 Feb 3.
8
Linked Sources of Neural Noise Contribute to Age-related Cognitive Decline.
J Cogn Neurosci. 2020 Sep;32(9):1813-1822. doi: 10.1162/jocn_a_01584. Epub 2020 May 19.
9
Functional MRI and EEG Index Complementary Attentional Modulations.
J Neurosci. 2019 Jul 31;39(31):6162-6179. doi: 10.1523/JNEUROSCI.2519-18.2019. Epub 2019 May 24.

本文引用的文献

1
Using spatial uncertainty to manipulate the size of the attention focus.
Sci Rep. 2016 Sep 1;6:32364. doi: 10.1038/srep32364.
2
Alpha phase dynamics predict age-related visual working memory decline.
Neuroimage. 2016 Dec;143:196-203. doi: 10.1016/j.neuroimage.2016.08.052. Epub 2016 Aug 27.
3
Decoding and Reconstructing the Focus of Spatial Attention from the Topography of Alpha-band Oscillations.
J Cogn Neurosci. 2016 Aug;28(8):1090-7. doi: 10.1162/jocn_a_00955. Epub 2016 Mar 22.
4
Age-Related Changes in 1/f Neural Electrophysiological Noise.
J Neurosci. 2015 Sep 23;35(38):13257-65. doi: 10.1523/JNEUROSCI.2332-14.2015.
5
Parietal and Frontal Cortex Encode Stimulus-Specific Mnemonic Representations during Visual Working Memory.
Neuron. 2015 Aug 19;87(4):893-905. doi: 10.1016/j.neuron.2015.07.013. Epub 2015 Aug 6.
6
Visual attention mitigates information loss in small- and large-scale neural codes.
Trends Cogn Sci. 2015 Apr;19(4):215-26. doi: 10.1016/j.tics.2015.02.005. Epub 2015 Mar 11.
7
Motion direction biases and decoding in human visual cortex.
J Neurosci. 2014 Sep 10;34(37):12601-15. doi: 10.1523/JNEUROSCI.1034-14.2014.
8
Attention modulates spatial priority maps in the human occipital, parietal and frontal cortices.
Nat Neurosci. 2013 Dec;16(12):1879-87. doi: 10.1038/nn.3574. Epub 2013 Nov 10.
9
α oscillations related to anticipatory attention follow temporal expectations.
J Neurosci. 2011 Oct 5;31(40):14076-84. doi: 10.1523/JNEUROSCI.3387-11.2011.
10
The spatial distribution of attention within and across objects.
J Exp Psychol Hum Percept Perform. 2012 Feb;38(1):135-51. doi: 10.1037/a0024463. Epub 2011 Jul 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验