Strauß J, Alt J A, Ekschmitt K, Schul J, Lakes-Harlan R
Institute for Animal Physiology, AG Integrative Sensory Physiology, Justus-Liebig-Universität Gießen, Gießen, Germany.
Institute for Animal Ecology, Justus-Liebig-Universität Gießen, Gießen, Germany.
J Evol Biol. 2017 Jun;30(6):1094-1109. doi: 10.1111/jeb.13066. Epub 2017 May 2.
Neoconocephalus Tettigoniidae are a model for the evolution of acoustic signals as male calls have diversified in temporal structure during the radiation of the genus. The call divergence and phylogeny in Neoconocephalus are established, but in tettigoniids in general, accompanying evolutionary changes in hearing organs are not studied. We investigated anatomical changes of the tympanal hearing organs during the evolutionary radiation and divergence of intraspecific acoustic signals. We compared the neuroanatomy of auditory sensilla (crista acustica) from nine Neoconocephalus species for the number of auditory sensilla and the crista acustica length. These parameters were correlated with differences in temporal call features, body size, life histories and different phylogenetic positions. By this, adaptive responses to shifting frequencies of male calls and changes in their temporal patterns can be evaluated against phylogenetic constraints and allometry. All species showed well-developed auditory sensilla, on average 32-35 between species. Crista acustica length and sensillum numbers correlated with body size, but not with phylogenetic position or life history. Statistically significant correlations existed also with specific call patterns: a higher number of auditory sensilla occurred in species with continuous calls or slow pulse rates, and a longer crista acustica occurred in species with double pulses or slow pulse rates. The auditory sensilla show significant differences between species despite their recent radiation, and morphological and ecological similarities. This indicates the responses to natural and sexual selection, including divergence of temporal and spectral signal properties. Phylogenetic constraints are unlikely to limit these changes of the auditory systems.
草螽科的新曲蟪蛄属是声学信号进化的一个模型,因为在该属的辐射过程中,雄性鸣叫的时间结构已经多样化。新曲蟪蛄属的鸣叫差异和系统发育已经确立,但一般来说,对于螽斯科昆虫,其听觉器官伴随的进化变化尚未得到研究。我们研究了在进化辐射和种内声学信号分化过程中鼓膜听觉器官的解剖学变化。我们比较了9种新曲蟪蛄属物种的听觉感受器(听脊)的神经解剖结构,包括听觉感受器的数量和听脊的长度。这些参数与鸣叫时间特征、体型、生活史以及不同系统发育位置的差异相关。由此,可以根据系统发育限制和异速生长来评估对雄性鸣叫频率变化及其时间模式变化的适应性反应。所有物种都表现出发育良好的听觉感受器,物种间平均有32 - 35个。听脊长度和感受器数量与体型相关,但与系统发育位置或生活史无关。与特定的鸣叫模式也存在统计学上的显著相关性:在连续鸣叫或脉冲速率较慢的物种中,听觉感受器数量较多;在双脉冲或脉冲速率较慢的物种中,听脊较长。尽管新曲蟪蛄属物种近期才发生辐射,且在形态和生态上具有相似性,但它们的听觉感受器在物种间仍存在显著差异。这表明了对自然选择和性选择的响应,包括时间和频谱信号特性的分化。系统发育限制不太可能限制听觉系统的这些变化。