Suppr超能文献

Biochemical and functional interactions of a selective kappa opioid agonist with calcium.

作者信息

VonVoigtlander P F, Ochoa M C, Lewis R A

机构信息

CNS Research, Upjohn Company, Kalamazoo, Michigan 49001.

出版信息

Adv Exp Med Biol. 1987;221:345-55. doi: 10.1007/978-1-4684-7618-7_24.

Abstract

The discovery of the selective kappa opioid receptor agonist, U-50488H, has provided a tool for the study of the mechanisms and function of the kappa receptor-effector. We have investigated the interactions of this compound with calcium in several biochemical and functional studies to assess the involvement of calcium mechanisms in the kappa receptor-linked effector. In rat brain synaptosomes, U-50488H attenuated the uptake of 45Ca++ induced by K+ (40 mM) depolarization. This effect was concentration-related (U-50488H 10(-5) to 10(-7) M), was apparent in short (8-second) but not longer (1-minute) term incubations, and did not occur in the presence of a non-polarizing concentration (5.6 mM) of K+. Naloxone (10(-7) M) did not block this effect of U-50488H (10(-6) M), and higher concentrations (10(-5) M) alone blocked calcium uptake. We have found that the binding of the depolarizing amino acid analog, kainic acid, is enhanced by CaCl2. U-50488H (10(-4) to 10(-6) M) blocks this enhancement of 3H-kainic acid binding in vitro and also blocks the in vivo effects of kainic acid. In mice, intravenous injection of kainic acid causes scratching, convulsions, and death, depending on the dose administered. U-50488H blocks all of these effects (ED50 = 4.5 mg/kg for antagonism of convulsions induced by 27.5 mg/kg kainic acid). The convulsions induced by intracerebroventricularly administered kainic acid are also blocked by U-50488H as are those induced by similarly administered Bay K 8644, a calcium channel activator. All of these anticonvulsant effects of U-50488H were antagonized by naltrexone. Together these data indicate that the kappa agonist U-50488H has functionally relevant interactions with depolarization-related Ca++ mechanisms in the central nervous system.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验