Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P.R. China.
Institut Néel, CNRS &, Université Joseph Fournier, Grenoble Cedex 9, France.
Angew Chem Int Ed Engl. 2017 Apr 24;56(18):4996-5000. doi: 10.1002/anie.201701480. Epub 2017 Mar 15.
An extremely rare non-Kramers holmium(III) single-ion magnet (SIM) is reported to be stabilized in the pentagonal-bipyramidal geometry by a phosphine oxide with a high energy barrier of 237(4) cm . The suppression of the quantum tunneling of magnetization (QTM) at zero field and the hyperfine structures originating from field-induced QTMs can be observed even from the field-dependent alternating-current magnetic susceptibility in addition to single-crystal hysteresis loops. These dramatic dynamics were attributed to the combination of the favorable crystal-field environment and the hyperfine interactions arising from Ho (I=7/2) with a natural abundance of 100 %.
报道了一种极为罕见的非克鲁梅尔钬(III)单离子磁体(SIM),通过具有 237(4) cm高能垒的氧化膦稳定在五角双锥几何形状中。即使在单晶磁滞回线之外,还可以通过外加磁场下的交流磁化率观察到零场下的磁量子隧道效应(QTM)的抑制以及源自磁场诱导的 QTM 的超精细结构。这些显著的动力学特性归因于有利的晶体场环境和来自自然丰度为 100%的 Ho(I=7/2)的超精细相互作用的组合。