Institute for Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, 8093 Zurich, Switzerland.
Ralph M. Parsons Laboratory, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge 02139, Massachusetts, USA.
Nature. 2017 Mar 23;543(7646):555-558. doi: 10.1038/nature21415. Epub 2017 Mar 15.
Marine phytoplankton inhabit a dynamic environment where turbulence, together with nutrient and light availability, shapes species fitness, succession and selection. Many species of phytoplankton are motile and undertake diel vertical migrations to gain access to nutrient-rich deeper layers at night and well-lit surface waters during the day. Disruption of this migratory strategy by turbulence is considered to be an important cause of the succession between motile and non-motile species when conditions turn turbulent. However, this classical view neglects the possibility that motile species may actively respond to turbulent cues to avoid layers of strong turbulence. Here we report that phytoplankton, including raphidophytes and dinoflagellates, can actively diversify their migratory strategy in response to hydrodynamic cues characteristic of overturning by Kolmogorov-scale eddies. Upon experiencing repeated overturning with timescales and statistics representative of ocean turbulence, an upward-swimming population rapidly (5-60 min) splits into two subpopulations, one swimming upward and one swimming downward. Quantitative morphological analysis of the harmful-algal-bloom-forming raphidophyte Heterosigma akashiwo together with a model of cell mechanics revealed that this behaviour was accompanied by a modulation of the cells' fore-aft asymmetry. The minute magnitude of the required modulation, sufficient to invert the preferential swimming direction of the cells, highlights the advanced level of control that phytoplankton can exert on their migratory behaviour. Together with observations of enhanced cellular stress after overturning and the typically deleterious effects of strong turbulence on motile phytoplankton, these results point to an active adaptation of H. akashiwo to increase the chance of evading turbulent layers by diversifying the direction of migration within the population, in a manner suggestive of evolutionary bet-hedging. This migratory behaviour relaxes the boundaries between the fluid dynamic niches of motile and non-motile phytoplankton, and highlights that rapid responses to hydrodynamic cues are important survival strategies for phytoplankton in the ocean.
海洋浮游植物栖息在一个动态的环境中,其中湍流以及营养物质和光照的可利用性塑造了物种的适应性、演替和选择。许多浮游植物都是运动的,并进行昼夜垂直迁移,以便在夜间进入营养丰富的较深层,在白天进入光照充足的水面。当条件变得不稳定时,湍流中断这种迁移策略被认为是运动和非运动物种之间演替的一个重要原因。然而,这种经典观点忽略了一个可能性,即运动物种可能会主动响应湍流线索,以避免强湍流层。在这里,我们报告浮游植物,包括甲藻和腰鞭毛藻,可以根据具有翻卷特征的水动力线索主动改变其迁移策略,这些线索由 Kolmogorov 尺度的 eddies 产生。在经历了具有海洋湍流代表性的时间尺度和统计特征的反复翻卷后,一个向上游动的种群迅速(5-60 分钟)分裂成两个亚种群,一个向上游游动,一个向下游游动。对形成有害赤潮的甲藻 Heterosigma akashiwo 的定量形态分析以及细胞力学模型表明,这种行为伴随着细胞前后不对称性的调节。所需调节的微小幅度足以反转细胞的优先游动方向,突出了浮游植物对其迁移行为的控制水平。与翻卷后细胞应激增强的观察结果以及强湍流对运动浮游植物的典型有害影响一起,这些结果表明,Heterosigma akashiwo 通过在种群内改变迁移方向来增加逃避湍流层的机会,从而进行积极的适应,这种方式类似于进化中的风险分散。这种迁移行为放宽了运动和非运动浮游植物的流体动力生态位之间的界限,并强调了对水动力线索的快速响应是浮游植物在海洋中的重要生存策略。