Wallen S P, Lee J, Mei D, Chong C, Kevrekidis P G, Boechler N
Department of Mechanical Engineering, University of Washington, Seattle, Washington 98195, USA.
Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts 01003-4515, USA.
Phys Rev E. 2017 Feb;95(2-1):022904. doi: 10.1103/PhysRevE.95.022904. Epub 2017 Feb 22.
We report on the existence of discrete breathers in a one-dimensional, mass-in-mass chain with linear intersite coupling and nonlinear, precompressed Hertzian local resonators, which is motivated by recent studies of the dynamics of microspheres adhered to elastic substrates. After predicting theoretically the existence of discrete breathers in the continuum and anticontinuum limits of intersite coupling, we use numerical continuation to compute a family of breathers interpolating between the two regimes in a finite chain, where the displacement profiles of the breathers are localized around one lattice site. We then analyze the frequency-amplitude dependence of the breathers by performing numerical continuation on a linear eigenmode (vanishing amplitude) solution of the system near the upper band gap edge. Finally, we use direct numerical integration of the equations of motion to demonstrate the formation and evolution of the identified localized modes in energy-conserving and dissipative scenarios, including within settings that may be relevant to future experimental studies.
我们报告了在具有线性位点间耦合以及非线性、预压缩赫兹型局部谐振器的一维嵌套质量链中离散呼吸子的存在,这一研究受到近期关于附着在弹性基底上的微球动力学研究的启发。在从理论上预测在位点间耦合的连续极限和反连续极限中离散呼吸子的存在之后,我们使用数值延拓法来计算有限链中在这两种状态之间插值的一族呼吸子,其中呼吸子的位移分布局域在一个晶格位点周围。然后,我们通过对系统在上带隙边缘附近的线性本征模(振幅为零)解进行数值延拓,来分析呼吸子的频率 - 振幅依赖性。最后,我们使用运动方程的直接数值积分,来证明在能量守恒和耗散情形下所识别的局域模的形成与演化,包括在可能与未来实验研究相关的环境中。