Suppr超能文献

具有隐藏变量的无标度网络中的局部聚类

Local clustering in scale-free networks with hidden variables.

作者信息

van der Hofstad Remco, Janssen A J E M, van Leeuwaarden Johan S H, Stegehuis Clara

机构信息

Department of Mathematics and Computer Science, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands.

出版信息

Phys Rev E. 2017 Feb;95(2-1):022307. doi: 10.1103/PhysRevE.95.022307. Epub 2017 Feb 14.

Abstract

We investigate the presence of triangles in a class of correlated random graphs in which hidden variables determine the pairwise connections between vertices. The class rules out self-loops and multiple edges. We focus on the regime where the hidden variables follow a power law with exponent τ∈(2,3), so that the degrees have infinite variance. The natural cutoff h_{c} characterizes the largest degrees in the hidden variable models, and a structural cutoff h_{s} introduces negative degree correlations (disassortative mixing) due to the infinite-variance degrees. We show that local clustering decreases with the hidden variable (or degree). We also determine how the average clustering coefficient C scales with the network size N, as a function of h_{s} and h_{c}. For scale-free networks with exponent 2<τ<3 and the default choices h_{s}∼N^{1/2} and h_{c}∼N^{1/(τ-1)} this gives C∼N^{2-τ}lnN for the universality class at hand. We characterize the extremely slow decay of C when τ≈2 and show that for τ=2.1, say, clustering starts to vanish only for networks as large as N=10^{9}.

摘要

我们研究了一类相关随机图中三角形的存在情况,在这类随机图中,隐藏变量决定了顶点之间的成对连接。该类别排除了自环和多重边。我们关注隐藏变量遵循指数为τ∈(2,3)的幂律的情况,这样度数具有无限方差。自然截止值(h_{c})表征了隐藏变量模型中的最大度数,而结构截止值(h_{s})由于度数的无限方差引入了负度数相关性(异配混合)。我们表明局部聚类随隐藏变量(或度数)而降低。我们还确定了平均聚类系数(C)如何作为(h_{s})和(h_{c})的函数随网络规模(N)缩放。对于指数为(2<τ<3)的无标度网络以及默认选择(h_{s}∼N^{1/2})和(h_{c}∼N^{1/(τ - 1)}),对于手头的普适类,这给出(C∼N^{2 - τ}\ln N)。我们刻画了(τ≈2)时(C)极其缓慢的衰减,并表明例如对于(τ = 2.1),聚类仅在网络规模达到(N = 10^{9})时才开始消失。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验