Coulamy Ivan B, Saguia Andreia, Sarandy Marcelo S
Instituto de Física, Universidade Federal Fluminense, Avenida Gal. Milton Tavares de Souza s/n, Gragoatá, 24210-346 Niterói, Rio de Janeiro, Brazil.
Phys Rev E. 2017 Feb;95(2-1):022127. doi: 10.1103/PhysRevE.95.022127. Epub 2017 Feb 22.
We investigate the excitation dynamics at a first-order quantum phase transition (QPT). More specifically, we consider the quench-induced QPT in the quantum search algorithm, which aims at finding out a marked element in an unstructured list. We begin by deriving the exact dynamics of the model, which is shown to obey a Riccati differential equation. Then, we discuss the probabilities of success by adopting either global or local adiabaticity strategies. Moreover, we determine the disturbance of the quantum criticality as a function of the system size. In particular, we show that the critical point exponentially converges to its thermodynamic limit even in a fast evolution regime, which is characterized by both entanglement QPT estimators and the Schmidt gap. The excitation pattern is manifested in terms of quantum domain walls separated by kinks. The kink density is then shown to follow an exponential scaling as a function of the evolution speed, which can be interpreted as a Kibble-Zurek mechanism for first-order QPTs.
我们研究了一阶量子相变(QPT)中的激发动力学。更具体地说,我们考虑量子搜索算法中猝灭诱导的QPT,该算法旨在在无结构列表中找出一个标记元素。我们首先推导模型的精确动力学,结果表明它服从一个里卡蒂微分方程。然后,我们通过采用全局或局部绝热策略来讨论成功的概率。此外,我们确定了作为系统大小函数的量子临界性的扰动。特别地,我们表明即使在以纠缠QPT估计器和施密特间隙为特征的快速演化 regime 中,临界点也指数收敛到其热力学极限。激发模式表现为被扭结分隔的量子畴壁。然后表明扭结密度作为演化速度的函数遵循指数标度,这可以解释为一阶QPT的基布尔-祖雷克机制。