Suppr超能文献

急性冠状动脉综合征患者发生阻塞性睡眠呼吸暂停的预测因素。

Predictors of obstructive sleep apnoea in patients admitted for acute coronary syndrome.

机构信息

Respiratory Dept, Hospital Universitari Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain.

Both authors contributed equally to this study.

出版信息

Eur Respir J. 2017 Mar 15;49(3). doi: 10.1183/13993003.00550-2016. Print 2017 Mar.

Abstract

Identifying undiagnosed obstructive sleep apnoea (OSA) patients in cardiovascular clinics could improve their management. Aiming to build an OSA predictive model, a broad analysis of clinical variables was performed in a cohort of acute coronary syndrome (ACS) patients.Sociodemographic, anthropometric, life-style and pharmacological variables were recorded. Clinical measures included blood pressure, electrocardiography, echocardiography, blood count, troponin levels and a metabolic panel. OSA was diagnosed using respiratory polygraphy. Logistic regression models and classification and regression trees were used to create predictive models.A total of 978 patients were included (298 subjects with apnoea-hypopnoea index (AHI) <15 events·h and 680 with AHI ≥15 events·h). Age, BMI, Epworth sleepiness scale, peak troponin levels and use of calcium antagonists were the main determinants of AHI ≥15 events·h (C statistic 0.71; sensitivity 94%; specificity 24%). Age, BMI, blood triglycerides, peak troponin levels and Killip class ≥II were determinants of AHI ≥30 events·h (C statistic of 0.67; sensitivity 31%; specificity 86%).Although a set of variables associated with OSA was identified, no model could successfully predict OSA in patients admitted for ACS. Given the high prevalence of OSA, the authors propose respiratory polygraphy as a to-be-explored strategy to identify OSA in ACS patients.

摘要

识别心血管诊所中未确诊的阻塞性睡眠呼吸暂停(OSA)患者可以改善其治疗效果。本研究旨在建立 OSA 预测模型,对一组急性冠状动脉综合征(ACS)患者进行了广泛的临床变量分析。记录了社会人口统计学、人体测量学、生活方式和药理学变量。临床指标包括血压、心电图、超声心动图、血常规、肌钙蛋白水平和代谢谱。使用呼吸描记法诊断 OSA。采用逻辑回归模型和分类回归树建立预测模型。共纳入 978 例患者(298 例呼吸暂停低通气指数(AHI)<15 次·h,680 例 AHI≥15 次·h)。年龄、BMI、Epworth 嗜睡量表、肌钙蛋白峰值水平和钙通道阻滞剂的使用是 AHI≥15 次·h 的主要决定因素(C 统计量为 0.71;敏感性 94%;特异性 24%)。年龄、BMI、血三酰甘油、肌钙蛋白峰值水平和 Killip 分级≥II 是 AHI≥30 次·h 的决定因素(C 统计量为 0.67;敏感性 31%;特异性 86%)。尽管确定了一组与 OSA 相关的变量,但没有模型能够成功预测 ACS 患者的 OSA。鉴于 OSA 的高患病率,作者提出呼吸描记法作为一种探索性策略,以识别 ACS 患者中的 OSA。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验