Suppr超能文献

转运衔接蛋白ODA16和鞭毛内转运蛋白IFT46介导的外动力蛋白臂鞭毛内转运的结构基础

Structural basis of outer dynein arm intraflagellar transport by the transport adaptor protein ODA16 and the intraflagellar transport protein IFT46.

作者信息

Taschner Michael, Mourão André, Awasthi Mayanka, Basquin Jerome, Lorentzen Esben

机构信息

From the Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark.

the Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany.

出版信息

J Biol Chem. 2017 May 5;292(18):7462-7473. doi: 10.1074/jbc.M117.780155. Epub 2017 Mar 15.

Abstract

Motile cilia are found on unicellular organisms such as the green alga , on sperm cells, and on cells that line the trachea and fallopian tubes in mammals. The motility of cilia relies on a number of large protein complexes including the force-generating outer dynein arms (ODAs). The transport of ODAs into cilia has been previously shown to require the transport adaptor ODA16, as well as the intraflagellar transport (IFT) protein IFT46, but the molecular mechanism by which ODAs are recognized and transported into motile cilia is still unclear. Here, we determined the high-resolution crystal structure of ODA16 (CrODA16) and mapped the binding to IFT46 and ODAs. The CrODA16 structure revealed a small 80-residue N-terminal domain and a C-terminal 8-bladed β-propeller domain that are both required for the association with the N-terminal 147 residues of IFT46. The dissociation constant of the IFT46-ODA16 complex was 200 nm, demonstrating that CrODA16 associates with the IFT complex with an affinity comparable with that of the individual IFT subunits. Furthermore, we show, using ODAs extracted from the axonemes of , that the C-terminal β-propeller but not the N-terminal domain of CrODA16 is required for the interaction with ODAs. These data allowed us to present an architectural model for ODA16-mediated IFT of ODAs.

摘要

运动性纤毛存在于单细胞生物(如绿藻)、精子细胞以及哺乳动物气管和输卵管内壁的细胞上。纤毛的运动依赖于许多大型蛋白质复合物,包括产生动力的外动力蛋白臂(ODA)。先前已表明,ODA向纤毛的运输需要运输适配蛋白ODA16以及鞭毛内运输(IFT)蛋白IFT46,但ODA被识别并运输到运动性纤毛中的分子机制仍不清楚。在这里,我们确定了ODA16(CrODA16)的高分辨率晶体结构,并绘制了其与IFT46和ODA的结合图谱。CrODA16结构揭示了一个由80个残基组成的小N端结构域和一个C端8叶β-螺旋桨结构域,这两个结构域都是与IFT46的N端147个残基结合所必需的。IFT46-ODA16复合物的解离常数为200 nM,表明CrODA16与IFT复合物的结合亲和力与单个IFT亚基相当。此外,我们使用从轴丝中提取的ODA进行实验表明,CrODA16与ODA相互作用需要C端β-螺旋桨结构域而非N端结构域。这些数据使我们能够提出一个ODA16介导的ODA鞭毛内运输的结构模型。

相似文献

4
The N-terminus of IFT46 mediates intraflagellar transport of outer arm dynein and its cargo-adaptor ODA16.
Mol Biol Cell. 2017 Sep 1;28(18):2420-2433. doi: 10.1091/mbc.E17-03-0172. Epub 2017 Jul 12.
5
In vivo analysis of outer arm dynein transport reveals cargo-specific intraflagellar transport properties.
Mol Biol Cell. 2018 Oct 15;29(21):2553-2565. doi: 10.1091/mbc.E18-05-0291. Epub 2018 Aug 22.
6
ODA16 aids axonemal outer row dynein assembly through an interaction with the intraflagellar transport machinery.
J Cell Biol. 2008 Oct 20;183(2):313-22. doi: 10.1083/jcb.200802025. Epub 2008 Oct 13.
7
Functional analysis of an individual IFT protein: IFT46 is required for transport of outer dynein arms into flagella.
J Cell Biol. 2007 Feb 26;176(5):653-65. doi: 10.1083/jcb.200608041. Epub 2007 Feb 20.
8
Intraflagellar transport protein IFT52 recruits IFT46 to the basal body and flagella.
J Cell Sci. 2017 May 1;130(9):1662-1674. doi: 10.1242/jcs.200758. Epub 2017 Mar 16.
10
Gene dosage of independent dynein arm motor preassembly factors influences cilia assembly in Chlamydomonas reinhardtii.
PLoS Genet. 2024 Mar 18;20(3):e1011038. doi: 10.1371/journal.pgen.1011038. eCollection 2024 Mar.

引用本文的文献

2
The intraflagellar transport cycle.
Nat Rev Mol Cell Biol. 2025 Mar;26(3):175-192. doi: 10.1038/s41580-024-00797-x. Epub 2024 Nov 13.
3
ARL3 GTPases facilitate ODA16 unloading from IFT in motile cilia.
Sci Adv. 2024 Sep 6;10(36):eadq2950. doi: 10.1126/sciadv.adq2950. Epub 2024 Sep 4.
4
as a model system to study cilia and flagella using genetics, biochemistry, and microscopy.
Front Cell Dev Biol. 2024 May 30;12:1412641. doi: 10.3389/fcell.2024.1412641. eCollection 2024.
5
Label-free proteomic comparison reveals ciliary and nonciliary phenotypes of IFT-A mutants.
Mol Biol Cell. 2024 Mar 1;35(3):ar39. doi: 10.1091/mbc.E23-03-0084. Epub 2024 Jan 3.
6
Ordered deployment of distinct ciliary beating machines in growing axonemes of vertebrate multiciliated cells.
Differentiation. 2023 May-Jun;131:49-58. doi: 10.1016/j.diff.2023.03.001. Epub 2023 Apr 13.
7
as a Model Organism to Study the Molecular Background of Human Motile Ciliopathies.
Int J Mol Sci. 2023 Feb 24;24(5):4472. doi: 10.3390/ijms24054472.
8
The molecular structure of IFT-A and IFT-B in anterograde intraflagellar transport trains.
Nat Struct Mol Biol. 2023 May;30(5):584-593. doi: 10.1038/s41594-022-00905-5. Epub 2023 Jan 2.
9
Cargo adapters expand the transport range of intraflagellar transport.
J Cell Sci. 2022 Dec 15;135(24). doi: 10.1242/jcs.260408. Epub 2022 Dec 19.
10
Biochemically validated structural model of the 15-subunit intraflagellar transport complex IFT-B.
EMBO J. 2022 Dec 15;41(24):e112440. doi: 10.15252/embj.2022112440. Epub 2022 Nov 10.

本文引用的文献

1
Online Size-exclusion and Ion-exchange Chromatography on a SAXS Beamline.
J Vis Exp. 2017 Jan 5(119):54861. doi: 10.3791/54861.
2
3
Axonemal Dynein Arms.
Cold Spring Harb Perspect Biol. 2016 Nov 1;8(11):a028100. doi: 10.1101/cshperspect.a028100.
4
Recombinant Reconstitution and Purification of the IFT-B Core Complex from Chlamydomonas reinhardtii.
Methods Mol Biol. 2016;1454:69-82. doi: 10.1007/978-1-4939-3789-9_5.
5
The Intraflagellar Transport Machinery.
Cold Spring Harb Perspect Biol. 2016 Oct 3;8(10):a028092. doi: 10.1101/cshperspect.a028092.
7
Together, the IFT81 and IFT74 N-termini form the main module for intraflagellar transport of tubulin.
J Cell Sci. 2016 May 15;129(10):2106-19. doi: 10.1242/jcs.187120. Epub 2016 Apr 11.
9
Intraflagellar transport proteins 172, 80, 57, 54, 38, and 20 form a stable tubulin-binding IFT-B2 complex.
EMBO J. 2016 Apr 1;35(7):773-90. doi: 10.15252/embj.201593164. Epub 2016 Feb 24.
10
IFT-Cargo Interactions and Protein Transport in Cilia.
Trends Biochem Sci. 2015 Dec;40(12):765-778. doi: 10.1016/j.tibs.2015.09.003. Epub 2015 Oct 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验