Suppr超能文献

转化生长因子-β(TGF-β)通过一种新的依赖于Ⅱ型转化生长因子-β受体(TβRII)的纤连蛋白转运机制触发快速的纤维形成。

TGF-β triggers rapid fibrillogenesis via a novel TβRII-dependent fibronectin-trafficking mechanism.

作者信息

Varadaraj Archana, Jenkins Laura M, Singh Priyanka, Chanda Anindya, Snider John, Lee N Y, Amsalem-Zafran Ayelet R, Ehrlich Marcelo, Henis Yoav I, Mythreye Karthikeyan

机构信息

Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208.

Department of Environmental Health Sciences, University of South Carolina, Columbia, SC 29201.

出版信息

Mol Biol Cell. 2017 May 1;28(9):1195-1207. doi: 10.1091/mbc.E16-08-0601. Epub 2017 Mar 15.

Abstract

Fibronectin (FN) is a critical regulator of extracellular matrix (ECM) remodeling through its availability and stepwise polymerization for fibrillogenesis. Availability of FN is regulated by its synthesis and turnover, and fibrillogenesis is a multistep, integrin-dependent process essential for cell migration, proliferation, and tissue function. Transforming growth factor β (TGF-β) is an established regulator of ECM remodeling via transcriptional control of ECM proteins. Here we show that TGF-β, through increased FN trafficking in a transcription- and SMAD-independent manner, is a direct and rapid inducer of the fibrillogenesis required for TGF-β-induced cell migration. Whereas TGF-β signaling is dispensable for rapid fibrillogenesis, stable interactions between the cytoplasmic domain of the type II TGF-β receptor (TβRII) and the FN receptor (α5β1 integrin) are required. We find that, in response to TGF-β, cell surface-internalized FN is not degraded by the lysosome but instead undergoes recycling and incorporation into fibrils, a process dependent on TβRII. These findings are the first to show direct use of trafficked and recycled FN for fibrillogenesis, with a striking role for TGF-β in this process. Given the significant physiological consequences associated with FN availability and polymerization, our findings provide new insights into the regulation of fibrillogenesis for cellular homeostasis.

摘要

纤连蛋白(FN)是细胞外基质(ECM)重塑的关键调节因子,通过其可利用性以及逐步聚合形成纤维来实现。FN的可利用性受其合成和周转的调节,而纤维形成是一个多步骤、整合素依赖性过程,对细胞迁移、增殖和组织功能至关重要。转化生长因子β(TGF-β)是通过对ECM蛋白的转录控制来调节ECM重塑的既定调节因子。在此,我们表明,TGF-β通过以转录和SMAD非依赖性方式增加FN的运输,是TGF-β诱导的细胞迁移所需纤维形成的直接且快速的诱导剂。虽然TGF-β信号传导对于快速纤维形成并非必需,但II型TGF-β受体(TβRII)的胞质结构域与FN受体(α5β1整合素)之间的稳定相互作用是必需的。我们发现,响应TGF-β时,细胞表面内化的FN不会被溶酶体降解,而是经历再循环并整合到纤维中,这一过程依赖于TβRII。这些发现首次表明直接利用运输和再循环的FN进行纤维形成,TGF-β在此过程中发挥了显著作用。鉴于与FN可利用性和聚合相关的重大生理后果,我们的发现为细胞内稳态的纤维形成调节提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec2c/5415016/e83559917af7/1195fig1.jpg

相似文献

1
TGF-β triggers rapid fibrillogenesis via a novel TβRII-dependent fibronectin-trafficking mechanism.
Mol Biol Cell. 2017 May 1;28(9):1195-1207. doi: 10.1091/mbc.E16-08-0601. Epub 2017 Mar 15.
6
SPSB1, a Novel Negative Regulator of the Transforming Growth Factor-β Signaling Pathway Targeting the Type II Receptor.
J Biol Chem. 2015 Jul 17;290(29):17894-17908. doi: 10.1074/jbc.M114.607184. Epub 2015 Jun 1.
10
Transforming growth factor-β signalling: role and consequences of Smad linker region phosphorylation.
Cell Signal. 2013 Oct;25(10):2017-24. doi: 10.1016/j.cellsig.2013.06.001. Epub 2013 Jun 11.

引用本文的文献

3
Cancer-Associated Fibroblasts: Master Tumor Microenvironment Modifiers.
Cancers (Basel). 2023 Mar 22;15(6):1899. doi: 10.3390/cancers15061899.
5
Extracellular Matrix Recycling as a Novel Plasticity Mechanism With a Potential Role in Disease.
Front Cell Neurosci. 2022 Mar 31;16:854897. doi: 10.3389/fncel.2022.854897. eCollection 2022.
6
The Synaptic Extracellular Matrix: Long-Lived, Stable, and Still Remarkably Dynamic.
Front Synaptic Neurosci. 2022 Mar 8;14:854956. doi: 10.3389/fnsyn.2022.854956. eCollection 2022.
7
USP10 Promotes Fibronectin Recycling, Secretion, and Organization.
Invest Ophthalmol Vis Sci. 2021 Oct 4;62(13):15. doi: 10.1167/iovs.62.13.15.
9
High-Performance Near-Infrared Fluorescent Secondary Antibodies for Immunofluorescence.
Anal Chem. 2021 Feb 23;93(7):3643-3651. doi: 10.1021/acs.analchem.1c00276. Epub 2021 Feb 10.
10
Fibronectin assembly regulates lumen formation in breast acini.
J Cell Biochem. 2021 May;122(5):524-537. doi: 10.1002/jcb.29885. Epub 2021 Jan 13.

本文引用的文献

1
Fibronectin matrix assembly is essential for cell condensation during chondrogenesis.
J Cell Sci. 2014 Oct 15;127(Pt 20):4420-8. doi: 10.1242/jcs.150276. Epub 2014 Aug 21.
2
Particle size influences fibronectin internalization and degradation by fibroblasts.
Exp Cell Res. 2014 Oct 15;328(1):172-185. doi: 10.1016/j.yexcr.2014.06.018. Epub 2014 Jul 1.
3
Fibronectin matrix polymerization regulates smooth muscle cell phenotype through a Rac1 dependent mechanism.
PLoS One. 2014 Apr 21;9(4):e94988. doi: 10.1371/journal.pone.0094988. eCollection 2014.
4
Trafficking mechanisms of extracellular matrix macromolecules: insights from vertebrate development and human diseases.
Int J Biochem Cell Biol. 2014 Feb;47:57-67. doi: 10.1016/j.biocel.2013.11.005. Epub 2013 Dec 9.
5
Arf6, Rab11 and transferrin receptor define distinct populations of recycling endosomes.
Commun Integr Biol. 2013 Sep 1;6(5):e25036. doi: 10.4161/cib.25036. Epub 2013 May 21.
6
Mammary epithelial cell interactions with fibronectin stimulate epithelial-mesenchymal transition.
Oncogene. 2014 Mar 27;33(13):1649-57. doi: 10.1038/onc.2013.118. Epub 2013 Apr 29.
7
The relevance of the TGF-β Paradox to EMT-MET programs.
Cancer Lett. 2013 Nov 28;341(1):30-40. doi: 10.1016/j.canlet.2013.02.048. Epub 2013 Mar 5.
8
TGFβ signalling in context.
Nat Rev Mol Cell Biol. 2012 Oct;13(10):616-30. doi: 10.1038/nrm3434. Epub 2012 Sep 20.
9
TβRIII/β-arrestin2 regulates integrin α5β1 trafficking, function, and localization in epithelial cells.
Oncogene. 2013 Mar 14;32(11):1416-27. doi: 10.1038/onc.2012.157. Epub 2012 May 7.
10
Distinct recycling of active and inactive β1 integrins.
Traffic. 2012 Apr;13(4):610-25. doi: 10.1111/j.1600-0854.2012.01327.x. Epub 2012 Jan 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验