Alaybeyoglu Begum, Uluocak Bilge Gedik, Akbulut Berna Sariyar, Ozkirimli Elif
Chemical Engineering Department, Bogazici University, Bebek, 34342, Istanbul, Turkey.
Advanced Technologies R&D Center, Bogazici University, Bebek, 34342, Istanbul, Turkey.
J Pept Sci. 2017 May;23(5):374-383. doi: 10.1002/psc.2986. Epub 2017 Mar 16.
Co-administration of beta-lactam antibiotics and beta-lactamase inhibitors has been a favored treatment strategy against beta-lactamase-mediated bacterial antibiotic resistance, but the emergence of beta-lactamases resistant to current inhibitors necessitates the discovery of novel non-beta-lactam inhibitors. Peptides derived from the Ala46-Tyr51 region of the beta-lactamase inhibitor protein are considered as potent inhibitors of beta-lactamase; unfortunately, peptide delivery into the cell limits their potential. The properties of cell-penetrating peptides could guide the design of beta-lactamase inhibitory peptides. Here, our goal is to modify the peptide with the sequence RRGHYY that possesses beta-lactamase inhibitory activity under in vitro conditions. Inspired by the work on the cell-penetrating peptide pVEC, our approach involved the addition of the N-terminal hydrophobic residues, LLIIL, from pVEC to the inhibitor peptide to build a chimera. These residues have been reported to be critical in the uptake of pVEC. We tested the potential of RRGHYY and its chimeric derivative as a beta-lactamase inhibitory peptide on Escherichia coli cells and compared the results with the action of the antimicrobial peptide melittin, the beta-lactam antibiotic ampicillin, and the beta-lactamase inhibitor potassium clavulanate to get mechanistic details on their action. Our results show that the addition of LLIIL to the N-terminus of the beta-lactamase inhibitory peptide RRGHYY increases its membrane permeabilizing potential. Interestingly, the addition of this short stretch of hydrophobic residues also modified the inhibitory peptide such that it acquired antimicrobial property. We propose that addition of the hydrophobic LLIIL residues to the peptide N-terminus offers a promising strategy to design novel antimicrobial peptides in the battle against antibiotic resistance. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.
β-内酰胺抗生素与β-内酰胺酶抑制剂联合使用一直是对抗β-内酰胺酶介导的细菌抗生素耐药性的常用治疗策略,但对当前抑制剂耐药的β-内酰胺酶的出现使得有必要发现新型非β-内酰胺抑制剂。源自β-内酰胺酶抑制剂蛋白Ala46-Tyr51区域的肽被认为是β-内酰胺酶的有效抑制剂;不幸的是,肽进入细胞的过程限制了它们的潜力。细胞穿透肽的特性可以指导β-内酰胺酶抑制肽的设计。在此,我们的目标是修饰具有RRGHYY序列的肽,该肽在体外条件下具有β-内酰胺酶抑制活性。受细胞穿透肽pVEC研究工作的启发,我们的方法是将来自pVEC的N端疏水残基LLIIL添加到抑制剂肽中以构建嵌合体。据报道,这些残基对pVEC的摄取至关重要。我们测试了RRGHYY及其嵌合衍生物作为β-内酰胺酶抑制肽对大肠杆菌细胞的潜力,并将结果与抗菌肽蜂毒肽、β-内酰胺抗生素氨苄青霉素和β-内酰胺酶抑制剂克拉维酸钾的作用进行比较,以获取它们作用机制的详细信息。我们的结果表明,在β-内酰胺酶抑制肽RRGHYY的N端添加LLIIL会增加其膜通透潜力。有趣的是,添加这一小段疏水残基也修饰了抑制肽,使其获得了抗菌特性。我们提出,在肽的N端添加疏水的LLIIL残基为设计对抗抗生素耐药性的新型抗菌肽提供了一种有前景的策略。版权所有© 2017欧洲肽学会和约翰威立父子有限公司。