Magomedov Artiom, Sakai Nobuya, Kamarauskas Egidijus, Jokubauskaitė Gabrielė, Franckevičius Marius, Jankauskas Vygintas, Snaith Henry J, Getautis Vytautas
Department of Organic Chemistry, Kaunas University of Technology, Radvilenu pl. 19, Kaunas, 50254, Lithuania.
Department of Physics Clarendon Laboratory, University of Oxford, Parks Road, Oxford, OX1 3PU, UK.
Chem Asian J. 2017 May 4;12(9):958-962. doi: 10.1002/asia.201700173. Epub 2017 Mar 31.
Perovskite solar cells are considered a promising technology for solar-energy conversion, with power conversion efficiencies currently exceeding 20 %. In most of the reported devices, Spiro-OMeTAD is used for positive-charge extraction and transport layer. Although a number of alternative hole-transporting materials with different aromatic or heteroaromatic fragments have already been synthesized, a cheap and well-performing hole-transporting material is still in high demand. In this work, a two-step synthesis of a carbazole-based hole-transporting material is presented. Synthesized compounds exhibited amorphous nature, good solubility and thermal stability. The perovskite solar cells employing the newly synthesized material generated a power conversion efficiency of 16.5 % which is slightly lower than that obtained with Spiro-OMeTAD (17.5 %). The low-cost synthesis and high performance makes our hole-transport material promising for applications in perovskite-based optoelectronic devices.
钙钛矿太阳能电池被认为是一种很有前景的太阳能转换技术,目前其功率转换效率超过20%。在大多数已报道的器件中,Spiro-OMeTAD被用作正电荷提取和传输层。尽管已经合成了许多具有不同芳族或杂芳族片段的替代空穴传输材料,但对廉价且性能良好的空穴传输材料仍有很高的需求。在这项工作中,提出了一种基于咔唑的空穴传输材料的两步合成方法。合成的化合物表现出非晶态性质、良好的溶解性和热稳定性。采用新合成材料的钙钛矿太阳能电池产生的功率转换效率为16.5%,略低于使用Spiro-OMeTAD时获得的效率(17.5%)。低成本合成和高性能使我们的空穴传输材料在基于钙钛矿的光电器件应用中具有前景。