Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL) , 1015-Lausanne, Switzerland.
ACS Appl Mater Interfaces. 2017 Apr 5;9(13):11321-11331. doi: 10.1021/acsami.7b00810. Epub 2017 Mar 27.
The exquisite structural and optical characteristics of single-walled carbon nanotubes (SWCNTs), combined with the tunable specificities of proteins and peptides, can be exploited to strongly benefit technologies with applications in fields ranging from biomedicine to industrial biocatalysis. The key to exploiting the synergism of these materials is designing protein/peptide-SWCNT conjugation schemes that preserve biomolecule activity while keeping the near-infrared optical and electronic properties of SWCNTs intact. Since sp bond-breaking disrupts the optoelectronic properties of SWCNTs, noncovalent conjugation strategies are needed to interface biomolecules to the nanotube surface for optical biosensing and delivery applications. An underlying understanding of the forces contributing to protein and peptide interaction with the nanotube is thus necessary to identify the appropriate conjugation design rules for specific applications. This article explores the molecular interactions that govern the adsorption of peptides and proteins on SWCNT surfaces, elucidating contributions from individual amino acids as well as secondary and tertiary protein structure and conformation. Various noncovalent conjugation strategies for immobilizing peptides, homopolypeptides, and soluble and membrane proteins on SWCNT surfaces are presented, highlighting studies focused on developing near-infrared optical sensors and molecular scaffolds for self-assembly and biochemical analysis. The analysis presented herein suggests that though direct adsorption of proteins and peptides onto SWCNTs can be principally applied to drug and gene delivery, in vivo imaging and targeting, or cancer therapy, nondirect conjugation strategies using artificial or natural membranes, polymers, or linker molecules are often better suited for biosensing applications that require conservation of biomolecular functionality or precise control of the biomolecule's orientation. These design rules are intended to provide the reader with a rational approach to engineering biomolecule-SWCNT platforms, broadening the breadth and accessibility of both wild-type and engineered biomolecules for SWCNT-based applications.
单壁碳纳米管 (SWCNT) 的精致结构和光学特性,结合蛋白质和肽的可调节特异性,可以极大地有益于从生物医学到工业生物催化等领域的技术。利用这些材料的协同作用的关键是设计蛋白质/肽-SWCNT 缀合方案,在保持 SWCNT 的近红外光学和电子特性完整的同时保留生物分子的活性。由于 sp 键的断裂会破坏 SWCNT 的光电特性,因此需要非共价缀合策略将生物分子与纳米管表面连接,以用于光学生物传感和递药应用。因此,为了确定特定应用的适当缀合设计规则,需要对促成蛋白质和肽与纳米管相互作用的力有基本的了解。本文探讨了控制肽和蛋白质在 SWCNT 表面吸附的分子相互作用,阐明了单个氨基酸以及二级和三级蛋白质结构和构象的贡献。介绍了各种将肽、同聚多肽、可溶性和膜蛋白固定在 SWCNT 表面的非共价缀合策略,突出了针对开发近红外光学传感器和自组装及生化分析的分子支架的研究。本文的分析表明,尽管蛋白质和肽可以直接吸附到 SWCNT 上,主要应用于药物和基因递药、体内成像和靶向或癌症治疗,但使用人工或天然膜、聚合物或连接子的非直接缀合策略通常更适合需要保留生物分子功能或精确控制生物分子取向的生物传感应用。这些设计规则旨在为读者提供一种合理的方法来构建生物分子-SWCNT 平台,拓宽野生型和工程生物分子在基于 SWCNT 的应用中的广度和可及性。