Suppr超能文献

从碳和含氧化合物制备燃料的催化途径。

Catalytic routes to fuels from C and oxygenate molecules.

机构信息

Department of Chemical Engineering, University of California at Berkeley, Chemical Sciences Division, E. O. Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

出版信息

Faraday Discuss. 2017 Apr 28;197:9-39. doi: 10.1039/c7fd00018a.

Abstract

This account illustrates concepts in chemical kinetics underpinned by the formalism of transition state theory using catalytic processes that enable the synthesis of molecules suitable as fuels from C and oxygenate reactants. Such feedstocks provide an essential bridge towards a carbon-free energy future, but their volatility and low energy density require the formation of new C-C bonds and the removal of oxygen. These transformations are described here through recent advances in our understanding of the mechanisms and site requirements in catalysis by surfaces, with emphasis on enabling concepts that tackle ubiquitous reactivity and selectivity challenges. The hurdles in forming the first C-C bond from C molecules are illustrated by the oxidative coupling of methane, in which surface O-atoms form OH radicals from O and HO molecules. These gaseous OH species act as strong H-abstractors and activate C-H bonds with earlier transition states than oxide surfaces, thus rendering activation rates less sensitive to the weaker C-H bonds in larger alkane products than in CH reactants. Anhydrous carbonylation of dimethyl ether forms a single C-C bond on protons residing within inorganic voids that preferentially stabilize the kinetically-relevant transition state through van der Waals interactions that compensate for the weak CO nucleophile. Similar solvation effects, but by intrapore liquids instead of inorganic hosts, also become evident as alkenes condense within MCM-41 channels containing isolated Ni active sites during dimerization reactions. Intrapore liquids preferentially stabilize transition states for C-C bond formation and product desorption, leading to unprecedented reactivity and site stability at sub-ambient temperatures and to 1-alkene dimer selectivities previously achieved only on organometallic systems with co-catalysts or activators. C homologation selectively forms C and C chains with a specific backbone (isobutane, triptane) on solid acids, because of methylative growth and hydride transfer rates that reflect the stability of their carbenium ion transition states and are unperturbed by side reactions at low temperatures. Aldol condensation of carbonyl compounds and ketonization of carboxylic acids form new C-C bonds concurrently with O-removal. These reactions involve analogous elementary steps and occur on acid-base site pairs on TiO and ZrO catalysts. Condensations are limited by α-H abstraction to form enolates via concerted interactions with predominantly unoccupied acid-base pairs. Ketonization is mediated instead by C-C bond formation between hydroxy-enolates and monodentate carboxylates on site pairs nearly saturated by carboxylates. Both reactions are rendered practical through bifunctional strategies, in which H and a Cu catalyst function scavenge unreactive intermediates, prevent sequential reactions and concomitant deactivation, and remove thermodynamic bottlenecks. Alkanal-alkene Prins condensations on solid acids occur concurrently with alkene dimerization and form molecules with new C-C bonds as skeletal isomers unattainable by other routes. Their respective transition states are of similar size, leading to selectivities that cannot sense the presence of a confining host. Prins condensation reactions benefit from weaker acid sites because their transition states are less charged than those for oligomerization and consequently less sensitive to conjugate anions that become less stable as acids weaken.

摘要

本文使用催化过程阐明了化学动力学中的概念,这些过程支持过渡态理论,可用于合成适合用作燃料的分子,这些分子由 C 和含氧化合物反应物制成。此类原料为实现无碳能源未来提供了重要的桥梁,但它们的挥发性和低能量密度需要形成新的 C-C 键并去除氧。本文通过对表面催化中机制和位阻要求的最新理解,描述了这些转化,重点介绍了能够解决普遍存在的反应性和选择性挑战的概念。从 C 分子中形成第一个 C-C 键的障碍通过甲烷的氧化偶联得到说明,其中表面 O 原子从 O 和 HO 分子中形成 OH 自由基。这些气态 OH 物质作为强 H 提取剂,通过比氧化物表面更早的过渡态激活 C-H 键,从而使活化速率对较大烷烃产物中的较弱 C-H 键的敏感性低于 CH 反应物。二甲醚的无水羰基化作用在无机空隙内的质子上形成单个 C-C 键,这些质子优先通过范德华相互作用稳定动力学上相关的过渡态,从而补偿 CO 亲核试剂的弱性。类似的溶剂化效应,但通过无机主体内的孔内液体而不是无机主体,也在 MCM-41 通道内的孤立 Ni 活性位点中发生,在二聚反应过程中,烯烃缩合时变得明显。孔内液体优先稳定 C-C 键形成和产物解吸的过渡态,导致在亚环境温度下具有前所未有的反应性和位阻稳定性,以及在没有共催化剂或活化剂的有机金属体系中仅实现的 1-烯烃二聚选择性。在固体酸上,C 同系物选择性地形成具有特定骨架(异丁烷、三丙胺)的 C 和 C 链,因为甲氧基化和氢化物转移速率反映了它们的碳阳离子过渡态的稳定性,并且在低温下不受副反应的干扰。羰基化合物的醛醇缩合和羧酸的酮化作用同时形成新的 C-C 键和 O 去除。这些反应涉及类似的基本步骤,在 TiO 和 ZrO 催化剂上的酸碱位对上发生。缩合受到通过与主要未占据的酸碱位对协同相互作用形成烯醇盐的 α-H 提取的限制。酮化则通过在几乎饱和的羧酸盐位对上的羟烯醇盐和单齿羧酸盐之间的 C-C 键形成来介导。这两种反应都通过双功能策略变得可行,其中 H 和 Cu 催化剂功能可清除无活性中间体,防止连续反应和伴随的失活,并消除热力学瓶颈。固体酸上的链烷醛-烯烃 Prins 缩合与烯烃二聚化同时发生,并形成具有新 C-C 键的分子,这些分子是其他途径无法获得的骨架异构体。它们各自的过渡态大小相似,导致选择性无法感知到受限主体的存在。Prins 缩合反应得益于较弱的酸位,因为它们的过渡态比齐聚化的过渡态电荷更少,因此对作为酸减弱时变得不稳定的共轭阴离子的敏感性降低。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验