Suppr超能文献

金属氧化物相互转化对 Pd 催化剂上 CH4 反应中 C-H 键活化的影响。

Consequences of metal-oxide interconversion for C-H bond activation during CH4 reactions on Pd catalysts.

机构信息

Department of Chemical and Biomolecular Engineering, University of California , Berkeley, California 94720, United States.

出版信息

J Am Chem Soc. 2013 Oct 16;135(41):15425-42. doi: 10.1021/ja405004m. Epub 2013 Oct 1.

Abstract

Mechanistic assessments based on kinetic and isotopic methods combined with density functional theory are used to probe the diverse pathways by which C-H bonds in CH4 react on bare Pd clusters, Pd cluster surfaces saturated with chemisorbed oxygen (O*), and PdO clusters. C-H activation routes change from oxidative addition to H-abstraction and then to σ-bond metathesis with increasing O-content, as active sites evolve from metal atom pairs (-) to oxygen atom (O*-O*) pairs and ultimately to Pd cation-lattice oxygen pairs (Pd(2+)-O(2-)) in PdO. The charges in the CH3 and H moieties along the reaction coordinate depend on the accessibility and chemical state of the Pd and O centers involved. Homolytic C-H dissociation prevails on bare (-) and O*-covered surfaces (O*-O*), while C-H bonds cleave heterolytically on Pd(2+)-O(2-) pairs at PdO surfaces. On bare surfaces, C-H bonds cleave via oxidative addition, involving Pd atom insertion into the C-H bond with electron backdonation from Pd to C-H antibonding states and the formation of tight three-center (H3C···Pd···H)(‡) transition states. On O*-saturated Pd surfaces, C-H bonds cleave homolytically on O*-O* pairs to form radical-like CH3 species and nearly formed O-H bonds at a transition state (O*···CH3(•)···OH)(‡) that is looser and higher in enthalpy than on bare Pd surfaces. On PdO surfaces, site pairs consisting of exposed Pd(2+) and vicinal O(2-), Pd(ox)-O(ox), cleave C-H bonds heterolytically via σ-bond metathesis, with Pd(2+) adding to the C-H bond, while O(2-) abstracts the H-atom to form a four-center (H3C(δ-)···Pd(ox)···H(δ+)···O(ox))(‡) transition state without detectable Pd(ox) reduction. The latter is much more stable than transition states on - and O-O* pairs and give rise to a large increase in CH4 oxidation turnover rates at oxygen chemical potentials leading to Pd to PdO transitions. These distinct mechanistic pathways for C-H bond activation, inferred from theory and experiment, resemble those prevalent on organometallic complexes. Metal centers present on surfaces as well as in homogeneous complexes act as both nucleophile and electrophile in oxidative additions, ligands (e.g., O* on surfaces) abstract H-atoms via reductive deprotonation of C-H bonds, and metal-ligand pairs, with the pair as electrophile and the metal as nucleophile, mediate σ-bond metathesis pathways.

摘要

基于动力学和同位素方法结合密度泛函理论的机理评估被用来探测 CH4 中 C-H 键在裸露钯团簇、被化学吸附氧(O*)饱和的钯团簇表面和 PdO 团簇上反应的各种途径。随着活性位从金属原子对(-)演变为氧原子(O*-O*)对,最终演变为 PdO 中的 Pd 阳离子晶格氧对(Pd(2+)-O(2-)),C-H 活化途径从氧化加成转变为 H 提取,然后再转变为σ键复分解,O 含量增加。沿着反应坐标的 CH3 和 H 部分的电荷取决于所涉及的 Pd 和 O 中心的可及性和化学状态。在裸露的(-)和 O*-覆盖的表面(O*-O*)上,均裂 C-H 解离占主导地位,而在 PdO 表面上,Pd(2+)-O(2-)对上的 C-H 键则通过异裂断裂。在裸露的表面上,C-H 键通过氧化加成断裂,涉及 Pd 原子插入 C-H 键,同时 Pd 向 C-H 反键态回供电子,形成紧密的三中心(H3C···Pd···H)(‡)过渡态。在 O*-饱和的 Pd 表面上,C-H 键在 O*-O对上均裂断裂,形成类似自由基的 CH3 物种,并在过渡态(O···CH3(•)···OH)(‡)中形成几乎形成的 O-H 键,该过渡态比裸露的 Pd 表面上更松弛,焓值更高。在 PdO 表面上,由暴露的 Pd(2+)和相邻的 O(2-)组成的位对,通过 σ 键复分解异裂断裂 C-H 键,Pd(2+) 与 C-H 键加成,而 O(2-) 则提取 H 原子形成四中心(H3C(δ-)···Pd(ox)···H(δ+)···O(ox))(‡)过渡态,而没有检测到 Pd(ox)的还原。后者比-和 O*-O对的过渡态稳定得多,导致 CH4 在氧化势下的氧化周转率大大增加,从而导致 Pd 到 PdO 的转变。这些从理论和实验推断出的 C-H 键活化的不同机理途径类似于有机金属配合物中普遍存在的途径。表面上以及均相配合物中存在的金属中心在氧化加成中既作为亲核试剂又作为亲电试剂,配体(例如表面上的 O)通过 C-H 键的还原去质子化提取 H 原子,而金属-配体对,其中对为亲电试剂,金属为亲核试剂,介导 σ 键复分解途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验