Suppr超能文献

基因表达数据中交互效应的筛选。

Screening for interaction effects in gene expression data.

作者信息

Castaldi Peter J, Cho Michael H, Liang Liming, Silverman Edwin K, Hersh Craig P, Rice Kenneth, Aschard Hugues

机构信息

Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America.

Division of General Internal Medicine and Primary Care, Brigham and Women's Hospital, Boston, Massachusetts, United States of America.

出版信息

PLoS One. 2017 Mar 16;12(3):e0173847. doi: 10.1371/journal.pone.0173847. eCollection 2017.

Abstract

Expression quantitative trait (eQTL) studies are a powerful tool for identifying genetic variants that affect levels of messenger RNA. Since gene expression is controlled by a complex network of gene-regulating factors, one way to identify these factors is to search for interaction effects between genetic variants and mRNA levels of transcription factors (TFs) and their respective target genes. However, identification of interaction effects in gene expression data pose a variety of methodological challenges, and it has become clear that such analyses should be conducted and interpreted with caution. Investigating the validity and interpretability of several interaction tests when screening for eQTL SNPs whose effect on the target gene expression is modified by the expression level of a transcription factor, we characterized two important methodological issues. First, we stress the scale-dependency of interaction effects and highlight that commonly applied transformation of gene expression data can induce or remove interactions, making interpretation of results more challenging. We then demonstrate that, in the setting of moderate to strong interaction effects on the order of what may be reasonably expected for eQTL studies, standard interaction screening can be biased due to heteroscedasticity induced by true interactions. Using simulation and real data analysis, we outline a set of reasonable minimum conditions and sample size requirements for reliable detection of variant-by-environment and variant-by-TF interactions using the heteroscedasticity consistent covariance-based approach.

摘要

表达数量性状(eQTL)研究是识别影响信使核糖核酸水平的遗传变异的有力工具。由于基因表达受复杂的基因调控因子网络控制,识别这些因子的一种方法是寻找遗传变异与转录因子(TFs)及其各自靶基因的信使核糖核酸水平之间的相互作用效应。然而,在基因表达数据中识别相互作用效应存在各种方法学挑战,并且很明显,此类分析应谨慎进行和解释。在筛选其对靶基因表达的影响因转录因子表达水平而改变的eQTL单核苷酸多态性(SNP)时,我们研究了几种相互作用测试的有效性和可解释性,确定了两个重要的方法学问题。首先,我们强调相互作用效应的尺度依赖性,并指出基因表达数据的常用转换可诱导或消除相互作用,使结果解释更具挑战性。然后我们证明,在对eQTL研究可能合理预期的中等至强相互作用效应的情况下,标准的相互作用筛选可能因真实相互作用引起的异方差而产生偏差。通过模拟和实际数据分析,我们概述了使用基于异方差一致协方差的方法可靠检测变异-环境和变异-TF相互作用的一组合理的最低条件和样本量要求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b70/5354413/0d9b1dca8ea4/pone.0173847.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验