Harms Tyler M, Murphy Kevin T, Lyu Xiaodan, Patterson Shane S, Kinkead Karen E, Dinsmore Stephen J, Frese Paul W
Center for Survey Statistics and Methodology, Iowa State University, 208 Office and Laboratory Building, 2401 Osborn Drive, Ames, Iowa, United States of America.
Department of Natural Resource Ecology and Management, Iowa State University, 339 Science Hall II, 2310 Pammel Drive, Ames, Iowa, United States of America.
PLoS One. 2017 Mar 16;12(3):e0173041. doi: 10.1371/journal.pone.0173041. eCollection 2017.
Predicting species distributions has long been a valuable tool to plan and focus efforts for biodiversity conservation, particularly because such an approach allows researchers and managers to evaluate species distribution changes in response to various threats. Utilizing data from a long-term monitoring program and land cover data sets, we modeled the probability of occupancy and colonization for 38 bird Species of Greatest Conservation Need (SGCN) in the robust design occupancy modeling framework, and used results from the best models to predict occupancy and colonization on the Iowa landscape. Bird surveys were conducted at 292 properties from April to October, 2006-2014. We calculated landscape habitat characteristics at multiple spatial scales surrounding each of our surveyed properties to be used in our models and then used kriging in ArcGIS to create predictive maps of species distributions. We validated models with data from 2013 using the area under the receiver operating characteristic curve (AUC). Probability of occupancy ranged from 0.001 (SE < 0.001) to 0.995 (SE = 0.004) for all species and probability of colonization ranged from 0.001 (SE < 0.001) to 0.999 (SE < 0.001) for all species. AUC values for predictive models ranged from 0.525-0.924 for all species, with 17 species having predictive models considered useful (AUC > 0.70). The most important predictor for occupancy of grassland birds was percentage of the landscape in grassland habitat, and the most important predictor for woodland birds was percentage of the landscape in woodland habitat. This emphasizes the need for managers to restore specific habitats on the landscape. In an era during which funding continues to decrease for conservation agencies, our approach aids in determining where to focus limited resources to best conserve bird species of conservation concern.
长期以来,预测物种分布一直是规划和集中开展生物多样性保护工作的一项重要工具,特别是因为这种方法能让研究人员和管理人员评估物种分布因各种威胁而发生的变化。利用长期监测项目的数据和土地覆盖数据集,我们在稳健设计占用模型框架内,对38种最需要保护的鸟类(SGCN)的占用和定殖概率进行了建模,并使用最佳模型的结果来预测爱荷华州景观中的占用和定殖情况。2006年至2014年4月至1月期间,在292处地产上进行了鸟类调查。我们计算了每个被调查地产周围多个空间尺度上的景观栖息地特征,以便用于我们的模型,然后在ArcGIS中使用克里金法创建物种分布预测图。我们使用接收器操作特征曲线(AUC)下的面积,用2013年的数据对模型进行了验证。所有物种的占用概率范围为0.001(标准误差<0.001)至0.995(标准误差=0.004),所有物种的定殖概率范围为0.001(标准误差<0.001)至0.999(标准误差<0.001)。所有物种预测模型的AUC值范围为0.525 - 0.924,其中17种物种的预测模型被认为是有用的(AUC>0.70)。草原鸟类占用的最重要预测因子是草原栖息地在景观中所占的百分比,林地鸟类占用的最重要预测因子是林地栖息地在景观中所占的百分比。这突出了管理人员在景观中恢复特定栖息地的必要性。在保护机构资金持续减少的时代,我们的方法有助于确定将有限资源集中用于何处,以最佳地保护受关注的鸟类物种。